Preferences help
enabled [disable] Abstract
Number of results
2014 | 12 | 2 | 132-140
Article title

Dilepton creation based on an analytic hydrodynamic solution

Title variants
Languages of publication
High-energy collisions of various nuclei, so called “Little Bangs” are observed in various experiments of heavy ion colliders. The time evolution of the strongly interacting quark-gluon plasma created in heavy ion collisions can be described by hydrodynamical models. After expansion and cooling, the hadrons are created in a freeze-out. Their distribution describes the final state of this medium. To investigate the time evolution one needs to analyze penetrating probes, such as direct photon or dilepton observables, as these particles are created throughout the evolution of the medium. In this paper we analyze an 1+3 dimensional analytic solution of relativistic hydrodynamics, and we calculate dilepton transverse momentum and invariant mass distributions. We investigate the dependence of dilepton production on time evolution parameters, such as emission duration and equation of state. Using parameters from earlier fits of this model to photon and hadron spectra, we compare our calculations to measurements as well. The most important feature of this work is that dilepton observables are calculated from an exact, analytic, 1+3D solution of relativistic hydrodynamics that is also compatible with hadronic and direct photon observables.
Physical description
1 - 2 - 2014
15 - 2 - 2014
  • Department of Atomic Physics, Eötvös University, Pázmány P. s. 1/a, 1117, Budapest, Hungary
  • Department of Atomic Physics, Eötvös University, Pázmány P. s. 1/a, 1117, Budapest, Hungary
  • [1] K. Adcox et al., Nucl. Phys. A757, 184 (2005)[Crossref]
  • [2] T. Csörgő, L. P. Csernai, Y. Hama, T. Kodama, Heavy Ion Phys. A21, 73 (2004)[Crossref]
  • [3] M. Csanád, M. Vargyas, Eur. Phys. J. A44, 473 (2010)[Crossref]
  • [4] M. Csanád, I. Májer, Central Eur. J. Phys. 10, 850 (2012)[Crossref]
  • [5] M. Csanád, M. Nagy, S. Lökös, Eur. Phys. J. A48, 173 (2012)[Crossref]
  • [6] M. Csanád, Acta Phys. Polon. B40, 1193 (2009)
  • [7] K. Dusling, D. Teaney, I. Zahed, Phys. Rev. C75, 024908 (2007)
  • [8] S. Ghosh, S. Sarkar, J.-e. Alam, Eur. Phys. J. C71, 1760 (2011)[Crossref]
  • [9] K. Kajantie, M. Kataja, L. D. McLerran, P. V. Ruuskanen, Phys. Rev. D34, 811 (1986)
  • [10] M. Asakawa, C. M. Ko, P. Lévai, Phys. Rev. Lett. 70, 398 (1993)[Crossref]
  • [11] H. van Hees, R. Rapp, Phys. Rev. Lett. 97, 102301 (2006)[Crossref]
  • [12] T. Renk, J. Ruppert, Phys. Rev. C77, 024907 (2008)
  • [13] J. Ruppert, C. Gale, T. Renk, P. Lichard, J. I. Kapusta, Phys. Rev. Lett. 100, 162301 (2008)[Crossref]
  • [14] J. K. Nayak, J.-e. Alam, T. Hirano, S. Sarkar, B. Sinha, Phys. Rev. C85, 064906 (2012)
  • [15] T. Song, K. C. Han, C. M. Ko, Phys. Rev. C83, 024904 (2011)
  • [16] K. Kajantie, J. I. Kapusta, L. D. McLerran, A. Mekjian, Phys. Rev. D34, 2746 (1986)
  • [17] J. Beringer et al., Phys. Rev. D86, 010001 (2012)
  • [18] S. Borsányi et al., JHEP 11, 077 (2010)[Crossref]
  • [19] A. Adare et al., Phys. Rev. C81, 034911 (2010)
  • [20] M. Vargyas, T. Csörgő, R. Vértesi, Central Eur. J. Phys. 11, 553 (2013)[Crossref]
  • [21] S. Damjanovic, J. Phys. G35, 104036 (2008)[Crossref]
  • [22] A. Ster, T. Csörgo, B. Lörstad, Nucl. Phys. A661, 419 (1999)[Crossref]
  • [23] R. Arnaldi et al., Phys. Rev. Lett. 96, 162302 (2006)[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.