Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2014 | 12 | 3 | 175-184

Article title

Path-wise versus kinetic modeling for equilibrating non-Langevin jump-type processes


Title variants

Languages of publication



We discuss two independent methods of solution of a master equation whose biased jump transition rates account for long jumps of Lévy-stable type and admit a Boltzmannian (thermal) equilibrium to arise in the large time asymptotics of a probability density function ρ(x, t). Our main goal is to demonstrate a compatibility of a direct solution method (an explicit, albeit numerically assisted, integration of the master equation) with an indirect pathwise procedure, recently proposed in [Physica A 392, 3485, (2013)] as a valid tool for a dynamical analysis of non-Langevin jump-type processes. The path-wise method heavily relies on an accumulation of large sample path data, that are generated by means of a properly tailored Gillespie’s algorithm. Their statistical analysis in turn allows to infer the dynamics of ρ(x, t). However, no consistency check has been completed so far to demonstrate that both methods are fully compatible and indeed provide a solution of the same dynamical problem. Presently we remove this gap, with a focus on potential deficiencies (various cutoffs, including those upon the jump size) of approximations involved in simulation routines and solutions protocols.










Physical description


1 - 3 - 2014
13 - 3 - 2014


  • Institute of Physics, University of Opole, 45-052, Opole, Poland
  • Institute of Physics, University of Opole, 45-052, Opole, Poland
  • Institute of Physics, University of Opole, 45-052, Opole, Poland


  • [1] R.N. Mantegna, H.E. Stanley, An Introduction to Econophysics. Correlations and Complexity in Finance (Cambridge Univ. Press, Cambridge, 2000)
  • [2] S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks: From Biological Nets to the Internet and www (Oxford University Press, Oxford, 2003) http://dx.doi.org/10.1093/acprof:oso/9780198515906.001.0001[Crossref]
  • [3] N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981)
  • [4] M. F. Shlesinger, G.M. Zaslavsky, U. Frisch (Ed.), Lévy flights and Related Topics in Physics (Springer-Verlag, Berlin, 1995); P. Garbaczewski, M. Wolf, A. Weron (Ed.), Chaos: The Interplay between Deterministic and Stochastic Behavior (Springer-Verlag, Berlin, 1995) http://dx.doi.org/10.1007/3-540-59222-9[Crossref]
  • [5] M.D. Glinchuk, A.V. Ragylya, V.A. Stephanovich, Nanoferroics (Springer, Dordrecht, 2013) http://dx.doi.org/10.1007/978-94-007-5992-3[Crossref]
  • [6] M. Mezard, G. Parisi, M. Virasoro, Spin Glass Theory and beyond (World Scientific. Singapore, 1987)
  • [7] K. Binder, D.W. Heermann, Monte Carlo Simulation in Statistical Physics. An Introduction (Springer, Dordrecht, 2002) http://dx.doi.org/10.1007/978-3-662-04685-2[Crossref]
  • [8] S. Jespersen, R. Metzler, H. C. Fogedby, Phys. Rev. E 59, 2736, (1999) http://dx.doi.org/10.1103/PhysRevE.59.2736[Crossref]
  • [9] R. Metzler, E. Barkai, J. Klafter, Europhys. Lett. 46, 431, (1999) http://dx.doi.org/10.1209/epl/i1999-00279-7[Crossref]
  • [10] I. Eliazar, J. Klafter, J. Stat. Phys. 119, 165, (2005) http://dx.doi.org/10.1007/s10955-004-2710-9[Crossref]
  • [11] P. Garbaczewski, V. Stephanovich, Open Systems Inf. Dyn., 17, 287, (2010) http://dx.doi.org/10.1142/S1230161210000187[Crossref]
  • [12] P. Garbaczewski, V. A. Stephanovich, Physica A 389, 4419, (2010) http://dx.doi.org/10.1016/j.physa.2010.06.036[Crossref]
  • [13] P. Garbaczewski, V. A. Stephanovich, D. Kędzierski, Physica A 390, 990, (2011) http://dx.doi.org/10.1016/j.physa.2010.11.041[Crossref]
  • [14] M. Zaba, P. Garbaczewski, V. Stephanovich, Physica A 392, 3485, (2013) http://dx.doi.org/10.1016/j.physa.2013.04.028[Crossref]
  • [15] D. Brockmann, T. Geisel, Phys. Rev. Lett. 90, 170601, (2003) http://dx.doi.org/10.1103/PhysRevLett.90.170601[Crossref]
  • [16] V. V. Belik, D. Brockmann, New. J. Phys. 9, 54, (2007) http://dx.doi.org/10.1088/1367-2630/9/3/054[Crossref]
  • [17] M. Zaba, P. Garbaczewski, International Journal of Statistical Mechanics 2013, 738345 (2013) http://dx.doi.org/10.1155/2013/738345[Crossref]
  • [18] K.-I. Sato, Lévy Processes and Infinitely Divisible Distributions, (Cambridge University Press, Cambridge, 1999)
  • [19] J. Lorinczi, F. Hiroshima, V. Betz, Feyman-Kac-Type Theorems and Gibbs Measures on Path Space, (Studies in Mathematics 34, Walter de Gruyter, Berlin, 2011) http://dx.doi.org/10.1515/9783110203738[Crossref]
  • [20] R. N. Mantegna, H. E. Stanley, Phys. Rev. Lett. 73, 2946, (1994) http://dx.doi.org/10.1103/PhysRevLett.73.2946[Crossref]
  • [21] P. Garbaczewski, R. Olkiewicz, J. Math. Phys. 41, 6843, (2000) http://dx.doi.org/10.1063/1.1290054[Crossref]
  • [22] E. M. Lifshitz, L. P. Pitaevskii, Physical Kinetics (Pergamon Press, New York, 1993)
  • [23] A. Abragam, Principles of Nuclear Magnetism, (Oxford University Press, Oxford, 2002)
  • [24] A.A. Dragulescu, V.M. Yakovenko, Eur. Phys. J. B 17, 723 (2000); see also A.A. Dragulescu PhD Thesis, arXiv:cond-mat/0307341 http://dx.doi.org/10.1007/s100510070114
  • [25] S. Ispolatov, P. L. Krapivsky, S. Redner, Eur. Phys. J. B 2, 267 (1998) http://dx.doi.org/10.1007/s100510050249[Crossref]
  • [26] P. Garbaczewski, V. A. Stephanovich, J. Math. Phys. 54, 072103, (2013) http://dx.doi.org/10.1063/1.4814049[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.