Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 12 | 2 | 111-122

Article title

A Jacobi collocation approximation for nonlinear coupled viscous Burgers’ equation

Content

Title variants

Languages of publication

EN

Abstracts

EN
This article presents a numerical approximation of the initial-boundary nonlinear coupled viscous Burgers’ equation based on spectral methods. A Jacobi-Gauss-Lobatto collocation (J-GL-C) scheme in combination with the implicit Runge-Kutta-Nyström (IRKN) scheme are employed to obtain highly accurate approximations to the mentioned problem. This J-GL-C method, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled viscous Burgers’ equation to a system of nonlinear ordinary differential equation which is far easier to solve. The given examples show, by selecting relatively few J-GL-C points, the accuracy of the approximations and the utility of the approach over other analytical or numerical methods. The illustrative examples demonstrate the accuracy, efficiency, and versatility of the proposed algorithm.

Publisher

Journal

Year

Volume

12

Issue

2

Pages

111-122

Physical description

Dates

published
1 - 2 - 2014
online
15 - 2 - 2014

Contributors

author
  • Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt
author
  • Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
author
  • Department of Basic Science, Institute of Information Technology, Modern Academy, Cairo, Egypt

References

  • [1] S. E. Esipov, Phys. Rev. E 52, 3711 (1995) http://dx.doi.org/10.1103/PhysRevE.52.3711[Crossref]
  • [2] J. D. Cole, Q. Appl. Math. 9, 225 (1951)
  • [3] J. Burgers, A mathematical model illustrating the theory of turbulence, Advances in Applied Mechanics (Academic Press, New York, 1948)
  • [4] M. A. Abdou, A. A. Soliman, J. Comput. Appl. Math. 181, 245 (2005) http://dx.doi.org/10.1016/j.cam.2004.11.032[Crossref]
  • [5] H. Aminikhah, Appl. Math. Model. 37, 5979 (2013) http://dx.doi.org/10.1016/j.apm.2012.12.013[Crossref]
  • [6] A. H. Khater, R. S. Temsah, M. M. Hassan, J. Comput. Appl. Math. 222, 33 (2008) http://dx.doi.org/10.1016/j.cam.2007.11.007[Crossref]
  • [7] D. Kaya, IJMMS 27, 675 (2001)
  • [8] I. Kucuk, I. Sadek, Appl. Math. Comput. 210, 126 (2009) http://dx.doi.org/10.1016/j.amc.2008.12.056[Crossref]
  • [9] M. T. Darvishi, S. Kheybari, F. Khani, Commun. Nonlinear Sci. Numer. Simul. 13, 2091 (2008) http://dx.doi.org/10.1016/j.cnsns.2007.05.023[Crossref]
  • [10] M. Javidi, A. Golbabai, J. Math. Anal. Appl. 333, 1119 (2007) http://dx.doi.org/10.1016/j.jmaa.2006.12.018[Crossref]
  • [11] E. Tohidi, A. H. Bhrawy, K. Erfani, Appl. Math. Model. 37, 4283 (2013) http://dx.doi.org/10.1016/j.apm.2012.09.032[Crossref]
  • [12] Y. -Y. Kwan, Appl. Numer. Math. 59, 170 (2009) http://dx.doi.org/10.1016/j.apnum.2008.01.003[Crossref]
  • [13] F. Chen, J. Shen, J. Comput. Phys. 231, 5016 (2012) http://dx.doi.org/10.1016/j.jcp.2012.03.001[Crossref]
  • [14] F. Ghoreishi, S. Yazdani, Comput. Math. Appl. 61, 30 (2011) http://dx.doi.org/10.1016/j.camwa.2010.10.027[Crossref]
  • [15] E. H. Doha, A. H. Bhrawy, R. M. Hafez, Commun. Nonlinear Sci. Numer. Simul. 17, 3802 (2012) http://dx.doi.org/10.1016/j.cnsns.2012.02.027[Crossref]
  • [16] T. Kattelans, W. Heinrichs, J. Comput. Phys. 228, 4649 (2009) http://dx.doi.org/10.1016/j.jcp.2009.03.015[Crossref]
  • [17] B. W. Li, S. Tian, Y. S. Sun, Z. M. Hu, J. Comput. Phys. 229, 1198 (2010) http://dx.doi.org/10.1016/j.jcp.2009.10.025[Crossref]
  • [18] K. Parand, M. Shahini, M. Dehghan, J. Comput. Phys. 228, 8830 (2009) http://dx.doi.org/10.1016/j.jcp.2009.08.029[Crossref]
  • [19] M. Dehghan, F. F. Izadi, Math. Comput. Model. 53, 1865 (2011) http://dx.doi.org/10.1016/j.mcm.2011.01.011[Crossref]
  • [20] A. H. Bhrawy, Appl. Math. Comput. 222, 255 (2013) http://dx.doi.org/10.1016/j.amc.2013.07.056[Crossref]
  • [21] Y. Ordokhani, M. Razzaghi, Appl. Math. Lett. 21, 4 (2008) http://dx.doi.org/10.1016/j.aml.2007.02.007[Crossref]
  • [22] K. Zhang, J. Li, H. Song, Appl. Math. Comput. 218, 10848 (2012) http://dx.doi.org/10.1016/j.amc.2012.04.045[Crossref]
  • [23] Y. Jiang, J. Ma, J. Comput. Appl. Math. 244, 115 (2013) http://dx.doi.org/10.1016/j.cam.2012.10.033[Crossref]
  • [24] S. Yüzbasi, M. Sezer, B. Kemanci, Appl. Math. Model. 37, 2086 (2013) http://dx.doi.org/10.1016/j.apm.2012.05.012[Crossref]
  • [25] A. H. Bhrawy, M. M. Tharwat, A. Yildirim, Appl. Math. Model. 37, 4245 (2013) http://dx.doi.org/10.1016/j.apm.2012.08.022[Crossref]
  • [26] C. Canuto, M. Y. Hussaini, A. Quarteroni, T. A. Zang, Spectral Methods: Fundamentals in Single Domains (Springer-Verlag, New York, 2006)
  • [27] A. H. Bhrawy, A. S. Alofi, Commun. Nonlinear Sci. Numer. Simul. 17, 62 (2012) http://dx.doi.org/10.1016/j.cnsns.2011.04.025[Crossref]
  • [28] B. Bialecki, A. Karageorghis, J. Comput. Phys. 227, 8588 (2008) http://dx.doi.org/10.1016/j.jcp.2008.06.009[Crossref]
  • [29] S. Esmaeili, M. Shamsi, Y. Luchko, Comput. Math. Appl. 62, 918 (2011) http://dx.doi.org/10.1016/j.camwa.2011.04.023[Crossref]
  • [30] E. H. Doha, A. H. Bhrawy, R. M. Hafez, Math. Comput. Model. 53, 1820 (2011) http://dx.doi.org/10.1016/j.mcm.2011.01.002[Crossref]
  • [31] D. Gottlieb, C. -W. Shu, SIAM Rev. 29, 644 (1997) http://dx.doi.org/10.1137/S0036144596301390[Crossref]
  • [32] D. Tchiotsop, D. Wolf, V. Louis-Dorr, R. Husson, ECG data compression using Jacobi polynomials, Proceedings of the 29th Annual International Conference of the IEEE EMBS, August 23–26, 2007, Lyon, France (Engineering in Medicine and Biology Society, France, 2007) 1863
  • [33] E. H. Doha, A. H. Bhrawy, Numer. Meth. Part. D. E. 25, 712 (2009) http://dx.doi.org/10.1002/num.20369[Crossref]
  • [34] M. El-Kady, J. Korean Math. Soc. 49, 99 (2012) http://dx.doi.org/10.4134/JKMS.2012.49.1.099[Crossref]
  • [35] G. Szegö, Orthogonal Polynomials, Colloquium Publications, XXIII (American Mathematical Society, Rhode Islands, 1939)
  • [36] R. C. Mittal, G. Arora, Commun. Nonlinear Sci. Numer. Simul. 16, 1304 (2011) http://dx.doi.org/10.1016/j.cnsns.2010.06.028[Crossref]
  • [37] A. Rashid, A. I. B. Ismail, Comput. Methods App. Math. 9, 412 (2009)
  • [38] R. A. Van Gorder, Acta Mech. 216, 345 (2011) http://dx.doi.org/10.1007/s00707-010-0360-3[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-014-0429-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.