Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 12 | 1 | 17-31

Article title

Stability characteristic of hypersonic flow over a blunt wedge under freestream pulse wave

Content

Title variants

Languages of publication

EN

Abstracts

EN
To investigate the stability characteristic of hypersonic flow under the action of a freestream pulse wave, a high-order finite difference method was employed to do direction numerical simulation (DNS) of hypersonic unsteady flow over an 8° half-wedge-angle blunt wedge with freestream slow acoustic wave. The evolution of disturbance wave modes in the boundary layer under a pulse wave and a continuous wave are compared, and the wall temperature effect on the hypersonic boundary layer stability for a pulse wave disturbance is discussed. Results show that, both for a pulse wave and a continuous wave in freestream, the disturbance waves inside the nose boundary layer are mainly a fundamental mode; the Fourier amplitude of pressure disturbance mode in the boundary layer for a pulse wave is far less than that for a continuous wave, and the band frequency of the former is wider than that of the latter. All disturbance modes decay rapidly along the streamwise in the nose boundary layer. In the non-nose boundary layer, the dominant mode is transferred from fundamental mode into second harmonic. The transformation of dominant mode for a pulse wave appears much earlier than that for a continuous wave. Different frequency disturbance modes present different changes along streamline in the boundary layer, and the frequency band narrows around the second harmonic mode along the streamwise. Keen competition and the transformation of energy exist among different modes in the boundary layer. Wall temperature modifies the stability characteristic of the hypersonic boundary layer, which presents little effect on the development of fundamental modes and cooling wall could accelerates the growth of the high frequency mode as well as the dominant mode transformation.

Publisher

Journal

Year

Volume

12

Issue

1

Pages

17-31

Physical description

Dates

published
1 - 1 - 2014
online
2 - 2 - 2014

Contributors

author
  • College of Aerospace and Civil Engineering, Harbin Engineering University, Nantong Street 145, 150001, Harbin, China
author
  • College of Aerospace and Civil Engineering, Harbin Engineering University, Nantong Street 145, 150001, Harbin, China
author
  • College of Aerospace and Civil Engineering, Harbin Engineering University, Nantong Street 145, 150001, Harbin, China
author
  • College of Aerospace and Civil Engineering, Harbin Engineering University, Nantong Street 145, 150001, Harbin, China
author
  • School of Foreign Languages, Harbin Institute of Technology, West Dazhi Street 92, 150001, Harbin, China

References

  • [1] B. P. Harold, C. James, NASA, TN-D1603, 1 (1963)
  • [2] X. Zhong, Y. Ma, J. Fluid Mech. 556, 55 (2006) http://dx.doi.org/10.1017/S0022112006009293[Crossref]
  • [3] S. Aso, K. Hayashi, M. Mizoguchi, AIAA, AIAA2002-0646, 1 (2002)
  • [4] H. Kentaro, A. Shigeru, T. Yasuhiro, Mem. Faculty Engi. 66, 39 (2006)
  • [5] E. M. Hirschel, Basics of Aerothermodynamics (Springer, Berlin, 2010)
  • [6] W. S. Saric, H. L. Reed, E. J. Kerschen, Annu. Rev. Fluid Mech. 34, 291 (2002) http://dx.doi.org/10.1146/annurev.fluid.34.082701.161921[Crossref]
  • [7] H. L. Reed, W. S. Saric, Annu. Rev. Fluid Mech. 28, 389 (1996) http://dx.doi.org/10.1146/annurev.fl.28.010196.002133[Crossref]
  • [8] V. L. Borodulin et al., Theor Comput. Fluid. Dyn. 15, 317 (2002) http://dx.doi.org/10.1007/s001620100054[Crossref]
  • [9] A. Dipankar, T. K. Sengupta, J. Comput. Phys. 215, 245, (2006) http://dx.doi.org/10.1016/j.jcp.2005.10.018[Crossref]
  • [10] Y. S. Kachanov, Eur. J. Mech. B-Fluids. 19, 723 (2000) http://dx.doi.org/10.1016/S0997-7546(00)90102-X[Crossref]
  • [11] S. Bake, A. V. Ivanov, H. H. Fernholz, K. Neemann, Y. S. Kachanov, Eur. J. Mech. B-Fluids. 21, 29 (2002) http://dx.doi.org/10.1016/S0997-7546(01)01156-6[Crossref]
  • [12] M. W. Johnson, Int. J. Heat Fluid Flow. 32, 392 (2011) http://dx.doi.org/10.1016/j.ijheatfluidflow.2010.11.005[Crossref]
  • [13] L. M. Mack, AGARD, Rep. No. 709, 3–1 (1984)
  • [14] X. Liang, X. L. Li, D. X. Fu, Y. W. Ma, Comput. Fluids. 39, 359 (2010) http://dx.doi.org/10.1016/j.compfluid.2009.09.015[Crossref]
  • [15] M. N. Kogan, V. G. Shumilkin, M. V. Ustinov, S. V. Zhigulev, Eur. J. Mech. B-Fluids. 20, 813 (2001) http://dx.doi.org/10.1016/S0997-7546(01)01145-1[Crossref]
  • [16] X. W. Wang, X. L. Zhong, Y. B. Ma, AIAA J. 49, 1336 (2011) http://dx.doi.org/10.2514/1.J050173[Crossref]
  • [17] K. F. Stetson, R. Kimmel, AIAA, AIAA93-0896, 1 (1993)
  • [18] Y. B. Ma, X. L. Zhong, J. Fluid Mech. 488, 31 (2003) http://dx.doi.org/10.1017/S0022112003004786[Crossref]
  • [19] A. J. Laderman, AIAA J. 16, 723 (1978) http://dx.doi.org/10.2514/3.7570[Crossref]
  • [20] B. U. Reinartz, J. V. Keuk, T. Coratekin, J. Ballmann, AIAA, AIAA2002-0506, 1 (2002)
  • [21] K. F. Stentson, AFSC Wright-Patterson Air Force Base, AFWAL-TR-80-3062, 1 (1980)
  • [22] L. Brown, C. Fischer, R. R. Boyce, B. Reinartz, H. Olivier, Shock Waves 2, 1231(2009) http://dx.doi.org/10.1007/978-3-540-85181-3_70[Crossref]
  • [23] K. Kara, P. Balakumar, O. A. Kandil, AIAA J. 49, 593 (2011) http://dx.doi.org/10.2514/1.J050032[Crossref]
  • [24] G. S. Jiang, C. W. Shu, J. Comput. Phys. 126, 202 (1996) http://dx.doi.org/10.1006/jcph.1996.0130[Crossref]
  • [25] M. M. Rai, T. B. Gatski, G. Erlebacher, AIAA95-0583 (1995)
  • [26] K. KARA, P. Balakumar, O. A. Kandil, AIAA, AIAA2007-945, 1 (2007)
  • [27] J. Steger, R. F. Warming, J. Comput. Phys. 40, 263 (1981) http://dx.doi.org/10.1016/0021-9991(81)90210-2[Crossref]
  • [28] P. Balakumar, AIAA, AIAA2007-4491, 1 (2007)
  • [29] C. J. Xu, R. Pasquetti, J. Comput. Phys. 196, 680 (2004) http://dx.doi.org/10.1016/j.jcp.2003.11.009[Crossref]
  • [30] A. M. Blokhin, Le Matematiche 57, 3 (2002)
  • [31] A. Prakash, N. Parsons, X. Wang, X. Zhong, J. Comput. Phys. 230, 8474 (2011) http://dx.doi.org/10.1016/j.jcp.2011.08.001[Crossref]
  • [32] R. K. Lobb, Naval Ordnance LabWhite Oak MD, AD0284378, 519 (1962)
  • [33] Y. D. Zhang, D. X. Fu, Y. W. Ma, X. L. Li, Sci. China G. 51, 1682 (2008) http://dx.doi.org/10.1007/s11433-008-0164-9[Crossref]
  • [34] I. V. Egorov, A. V. Fedorov, V. G. Soudakov, Theor. Comput. Fluid Dyn. 20, 41 (2006) http://dx.doi.org/10.1007/s00162-005-0001-y[Crossref]
  • [35] W. S. Saric, H. L. Reed, E. J. Kerschen, Annu. Rev. Fluid Mech. 34, 291 (2002) http://dx.doi.org/10.1146/annurev.fluid.34.082701.161921[Crossref]
  • [36] L. M. Mack, AIAA J. 13, 278 (1975) http://dx.doi.org/10.2514/3.49693[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-014-0421-7
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.