PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 11 | 12 | 1694-1703
Article title

Hall effect on MHD flow and heat transfer of nanofluids over a stretching wedge in the presence of velocity slip and Joule heating

Content
Title variants
Languages of publication
EN
Abstracts
EN
This paper deals with the boundary layer flow and heat transfer of nanofluids over a stretching wedge with velocity-slip boundary conditions. In this analysis, Hall effect and Joule heating are taken into consideration. Four different types of water-base nanofluids containing copper (Cu), silver (Ag), alumina (Al2O3), and titania (TiO2) nanoparticles are analyzed. The partial differential equations governing the flow and temperature fields are converted into a system of nonlinear ordinary differential equations using a similarity transformation. The resulting similarity equations are then solved by using the shooting technique along with the fourth order Runge-Kutta method. The effects of types of nanoparticles, the volume fraction of nanoparticles, the magnetic parameter, the Hall parameter, the wedge angle parameter, and the velocityslip parameter on the velocity and temperature fields are discussed and presented graphically, respectively.
Publisher

Journal
Year
Volume
11
Issue
12
Pages
1694-1703
Physical description
Dates
published
1 - 12 - 2013
online
20 - 12 - 2013
Contributors
author
  • School of Mathematics and Physics, North China Electric Power University, 071003, Baoding, China, suxh2005@163.com
author
  • School of Mathematics and Physics, University of Science and Technology Beijing, 100083, Beijing, China
References
  • [1] X. Yimin, L. Qiang, Int. J. Heat Fluid Fl. 21, 58 (2000) http://dx.doi.org/10.1016/S0142-727X(99)00067-3[Crossref]
  • [2] H. Masuda, A. Ebata, K. Teramae, N. Hishinuma, Netsu Bussei 7, 227 (1993) http://dx.doi.org/10.2963/jjtp.7.227[Crossref]
  • [3] S. K. Das, U. S. Stephen, Y. Wenhua, T. Pradeep, Nanofluids: Science and Technology, (Wiley- Interscience, Hoboken, 2007) http://dx.doi.org/10.1002/9780470180693[Crossref]
  • [4] S. Kakac, A. Pramuanjaroenkij, Int. J. Heat Mass Tran. 52, 3187 (2009) http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.02.006[Crossref]
  • [5] S. Witharana, H. Chen, Y. Ding, Nanoscale Res. Lett. 6, 231 (2011) http://dx.doi.org/10.1186/1556-276X-6-231[Crossref]
  • [6] R. Nazar, M. Jaradat, N. M. Arifin, I. Pop, Cent. Eur. J. Phys. 9, 1195 (2011) http://dx.doi.org/10.2478/s11534-011-0024-5[Crossref]
  • [7] A. A. Minea, R. S. Luciu, Microfluid Nanofluid 13, 977 (2012) http://dx.doi.org/10.1007/s10404-012-1017-4[Crossref]
  • [8] J. H. Lee et al., Int. J. Micro-Nano Scale Transport 1, 269 (2010) http://dx.doi.org/10.1260/1759-3093.1.4.269[Crossref]
  • [9] J. Eagen, R. Rusconi, R. Piazza, S. Yip, ASME J. Heat Transfer 132, 102402 (2010) http://dx.doi.org/10.1115/1.4001304[Crossref]
  • [10] K. F. V. Wong, O. D. Leon, Adv. Mech. Eng. 2010, 519659 (2010)
  • [11] J. Fan, L. Wang, ASME J. Heat Transfer 133, 040801 (2011) http://dx.doi.org/10.1115/1.4002633[Crossref]
  • [12] M. Sheikholeslami, M. Gorji-Bandpay, D. D. Ganji, Int. Commun. Heat Mass 39, 978 (2012) http://dx.doi.org/10.1016/j.icheatmasstransfer.2012.05.020[Crossref]
  • [13] S. Soleimani, M. Sheikholeslami, D. D. Ganji, M. Gorji-Bandpay, Int. Commun. Heat Mass 39, 565 (2012) http://dx.doi.org/10.1016/j.icheatmasstransfer.2012.01.016[Crossref]
  • [14] T. Grosan, I. Pop, ASME J. Heat Transfer 134, 082501 (2012) http://dx.doi.org/10.1115/1.4006159[Crossref]
  • [15] O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop, S. Wongwises, Int. J. Heat Mass Tran. 57, 582 (2013) http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.10.037[Crossref]
  • [16] M. Mustafa, T. Hayat, I. Pop, Int. J. Heat Mass Tran. 54, 5588 (2011) http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.07.021[Crossref]
  • [17] M. A. A. Hamad, M. Ferdows, Commun. Nonlinear Sci. Numer. Simulat. 17, 132 (2012) http://dx.doi.org/10.1016/j.cnsns.2011.02.024[Crossref]
  • [18] N. Bachok, A. Ishak, I. Pop, Int. J. Heat Mass Tran. 55, 642 (2012) http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.10.047[Crossref]
  • [19] M. A. A. Hamad, M. Ferdows, Appl. Math. Mech. Engl. Ed. 33, 923 (2012) http://dx.doi.org/10.1007/s10483-012-1595-7[Crossref]
  • [20] K. Vajravelu, et al., Int. J. Therm. Sci. 50, 843 (2011) http://dx.doi.org/10.1016/j.ijthermalsci.2011.01.008[Crossref]
  • [21] N. A. Yacob, A. Ishak, R. Nazar, I. Pop, Int. Commun. Heat mass 38, 149 (2011) http://dx.doi.org/10.1016/j.icheatmasstransfer.2010.12.003[Crossref]
  • [22] M. S. Abel, N. Mahesha, Appl. Math. Model. 32, 1965 (2008) http://dx.doi.org/10.1016/j.apm.2007.06.038[Crossref]
  • [23] M. S. Abel, M. M. Nandeppanavar, Commun. Nonlinear Sci. Numer. Simul. 14, 2120 (2009) http://dx.doi.org/10.1016/j.cnsns.2008.06.004[Crossref]
  • [24] T. R. Mahapatra, S. K. Nandy, A. S. Gupta, Int. J. Nonlinear Mech. 44, 124 (2009) http://dx.doi.org/10.1016/j.ijnonlinmec.2008.09.005[Crossref]
  • [25] S. Dinarvand, Cent. Eur. J. Phys. 7, 114 (2009) http://dx.doi.org/10.2478/s11534-008-0145-7[Crossref]
  • [26] T. Hayat, R. Ellahi, S. Asghar, Chem. Eng. Commun. 194, 37 (2007) http://dx.doi.org/10.1080/00986440600642868[Crossref]
  • [27] R. Ellahi, M. Hameed, Int. J. Numer. Meth. Heat Fluid Flow. 22, 24 (2012) http://dx.doi.org/10.1108/09615531211188775[Crossref]
  • [28] R. Ellahi, Appl. Math. Model. 37, 1451 (2013) http://dx.doi.org/10.1016/j.apm.2012.04.004[Crossref]
  • [29] M. A. A. Hamad, I. Pop, A. I. Md. Ismail, Nonlinear Anal. Real World Appl. 12, 1338 (2011) http://dx.doi.org/10.1016/j.nonrwa.2010.09.014[Crossref]
  • [30] M. S. Khan, I. Karim, L. E. Ali, A. Islam, Int. Nano Lett. 2, 24 (2012) http://dx.doi.org/10.1186/2228-5326-2-24[Crossref]
  • [31] G. W. Sutton, A. Sherman, Engineering Magnetohydrodynamics, 1rd edition (McGraw-Hill, New York, 1965)
  • [32] T. Hayat, R. Ellahi, S. Asghar, Chem. Eng. Commun. 195, 958 (2008) http://dx.doi.org/10.1080/00986440801906575[Crossref]
  • [33] T. Hayat, S. Nadeem, R. Ellahi, S. Asghar, Nonlinear Anal. Real World Appl. 11, 184 (2010) http://dx.doi.org/10.1016/j.nonrwa.2008.10.046[Crossref]
  • [34] E. M. Abo-Eldahab, A. M. Salem, Int. Commun. Heat Mass 31, 343 (2004) http://dx.doi.org/10.1016/j.icheatmasstransfer.2004.02.005[Crossref]
  • [35] A. M. Salem, M. A. El-Aziz, Appl. Math. Model. 32, 1236 (2008) http://dx.doi.org/10.1016/j.apm.2007.03.008[Crossref]
  • [36] M. A. El-Aziz, Meccanica 45, 97 (2010) http://dx.doi.org/10.1007/s11012-009-9227-x[Crossref]
  • [37] X. H. Su, L. C. Zheng, X. X. Zhang, Appl. Math. Mech. Engl. Ed. 33, 1555 (2012) http://dx.doi.org/10.1007/s10483-012-1643-9[Crossref]
  • [38] J. Zhu, L. C. Zheng, Z. G. Zhang, Appl. Math. Mech. Engl. Ed. 31, 439 (2010) http://dx.doi.org/10.1007/s10483-010-0404-z[Crossref]
  • [39] T. Fang, J. Zhang, S. Yao, Commun. Nonlinear Sci. Numer. Simul. 14, 3731 (2009) http://dx.doi.org/10.1016/j.cnsns.2009.02.012[Crossref]
  • [40] C. Y. Wang, Nonlinear Anal. Real World Appl. 10, 375 (2009) http://dx.doi.org/10.1016/j.nonrwa.2007.09.013[Crossref]
  • [41] B. Sahoo,Cent. Eur. J. Phys. 8, 498 (2010)
  • [42] S. Mukhopadhyay, Ain Shams Eng. J. 4, 485 (2013) http://dx.doi.org/10.1016/j.asej.2012.10.007[Crossref]
  • [43] J. J. Niu, L. C. Zheng, X. X. Zhang, Adv. Materials Res. 354, 45 (2011) http://dx.doi.org/10.4028/www.scientific.net/AMR.354-355.45[Crossref]
  • [44] L. C. Zheng, C. L. Zhang, X. X. Zhang, J. H. Zhang, J. Franklin. Inst. 350, 990 (2013) http://dx.doi.org/10.1016/j.jfranklin.2013.01.022[Crossref]
  • [45] W. Ibrahim, B. Shankar, Comput. Fluids 75, 1 (2013) http://dx.doi.org/10.1016/j.compfluid.2013.01.014[Crossref]
  • [46] L. G. Grubka, K. M. Bobba, ASME J Heat Transfer 107, 248 (1985) http://dx.doi.org/10.1115/1.3247387[Crossref]
  • [47] C. H. Chen, Heat Mass Transfer 33, 471 (1998) http://dx.doi.org/10.1007/s002310050217[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0331-0
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.