PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2014 | 12 | 1 | 63-69
Article title

Complex lag synchronization of two identical chaotic complex nonlinear systems

Content
Title variants
Languages of publication
EN
Abstracts
EN
Much progress has been made in the research of synchronization for chaotic real or complex nonlinear systems. In this paper we introduce a new type of synchronization which can be studied only for chaotic complex nonlinear systems. This type of synchronization may be called complex lag synchronization (CLS). A definition of CLS is introduced and investigated for two identical chaotic complex nonlinear systems. Based on Lyapunov function a scheme is designed to achieve CLS of chaotic attractors of these systems. The effectiveness of the obtained results is illustrated by a simulation example. Numerical results are plotted to show state variables, modulus errors and phase errors of these chaotic attractors after synchronization to prove that CLS is achieved.
Publisher

Journal
Year
Volume
12
Issue
1
Pages
63-69
Physical description
Dates
published
1 - 1 - 2014
online
2 - 2 - 2014
Contributors
  • Department of Mathematics, Umm Al-Qura University, P.O. Box 14949, Makkah, Kingdom of Saudi Arabia, kmaboualnaja@uqu.edu.sa
References
  • [1] L. M. Pecora, T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990) http://dx.doi.org/10.1103/PhysRevLett.64.821[Crossref]
  • [2] M. Lakshmanan, K. Murali, Chaos in nonlinear oscillators: controlling and synchronization (World Scientific, Singapore, 1996)
  • [3] S. K. Han, C. Kerrer, Y. Kuramoto, Phys. Rev. Lett. 75, 3190 (1995) http://dx.doi.org/10.1103/PhysRevLett.75.3190[Crossref]
  • [4] B. Blasius, A. Huppert, L. Stone, Nature 399, 354 (1999) http://dx.doi.org/10.1038/20676[Crossref]
  • [5] T. Yang, L. O. Chua, IEEE T. Circuits Syst. I 43, 817 (1996) http://dx.doi.org/10.1109/81.536758[Crossref]
  • [6] S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, C. S. Zhou, Phys. Reports 366, 1 (2002) http://dx.doi.org/10.1016/S0370-1573(02)00137-0[Crossref]
  • [7] A. C. J. Luo, Commun. Nonlinear Sci. Numer. Simulat. 14, 1901 (2009) http://dx.doi.org/10.1016/j.cnsns.2008.07.002[Crossref]
  • [8] R. Femat, G. Solis-Perales, Phys. Lett. A 262, 50 (1997) http://dx.doi.org/10.1016/S0375-9601(99)00667-2[Crossref]
  • [9] A.C. Fowler, J.D. Gibbon, M.J. McGuinness, Physica D 4, 139 (1982) http://dx.doi.org/10.1016/0167-2789(82)90057-4[Crossref]
  • [10] G.M. Mahmoud, M.A. Al-Kashif, S.A. Aly, Int. J. Mod. Phys. C 18, 253 (2007) http://dx.doi.org/10.1142/S0129183107010425[Crossref]
  • [11] G.M. Mahmoud, T. Bountis, E.E. Mahmoud, Int. J. Bifurcat. Chaos 17, 4295 (2007) http://dx.doi.org/10.1142/S0218127407019962[Crossref]
  • [12] G.M. Mahmoud, T. Bountis, G.M. AbdEl-Latif, E.E. Mahmoud, Nonlinear Dyn. 55, 43 (2009) http://dx.doi.org/10.1007/s11071-008-9343-5[Crossref]
  • [13] E.E Mahmoud, Mathematical and Computer Modelling 55, 1951 (2012) http://dx.doi.org/10.1016/j.mcm.2011.11.053[Crossref]
  • [14] G.M. Mahmoud, E.E. Mahmoud, Nonlinear Dyn. 67, 1613 (2012) http://dx.doi.org/10.1007/s11071-011-0091-6[Crossref]
  • [15] E.E Mahmoud, J. Franklin Inst. 349, 1247 (2012) http://dx.doi.org/10.1016/j.jfranklin.2012.01.010[Crossref]
  • [16] E.E. Mahmoud, Appl. Math. Inf. Sci. 7, 1429 (2013) http://dx.doi.org/10.12785/amis/070422[Crossref]
  • [17] G.M. Mahmoud, E.E. Mahmoud, Int. J. Bifurcat. Chaos 21, 2369 (2011) http://dx.doi.org/10.1142/S0218127411029859[Crossref]
  • [18] E.E. Mahmoud, Mathematics and Computers in Simulation 89, 69 (2013) http://dx.doi.org/10.1016/j.matcom.2013.02.008[Crossref]
  • [19] G.M. Mahmoud, E.E. Mahmoud, Mathematics and Computers in Simulation 80, 2286 (2010) http://dx.doi.org/10.1016/j.matcom.2010.03.012[Crossref]
  • [20] F. Nian, X. Wang, Y. Niu, D. Lin, Applied Mathematics and Computation 217, 2481 (2010) http://dx.doi.org/10.1016/j.amc.2010.07.059[Crossref]
  • [21] Z. Wu, J. Duan, X. Fu, Nonlinear Dyn. 69, 711–719 (2012)
  • [22] E.E. Mahmoud, Mathematical Methods in the Applied Sciences, DOI: 10.1002/mma.2793 [Crossref]
  • [23] G.M. Mahmoud, E.E. Mahmoud, Nonlinear Dyn. 73, 2231 (2013) http://dx.doi.org/10.1007/s11071-013-0937-1[Crossref]
  • [24] M. Hu, Y. Yang, Z. Xu, L. Guo, Mathematics and Computers in Simulation 79, 449 (2008) http://dx.doi.org/10.1016/j.matcom.2008.01.047[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0324-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.