Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 12 | 1 | 63-69

Article title

Complex lag synchronization of two identical chaotic complex nonlinear systems

Content

Title variants

Languages of publication

EN

Abstracts

EN
Much progress has been made in the research of synchronization for chaotic real or complex nonlinear systems. In this paper we introduce a new type of synchronization which can be studied only for chaotic complex nonlinear systems. This type of synchronization may be called complex lag synchronization (CLS). A definition of CLS is introduced and investigated for two identical chaotic complex nonlinear systems. Based on Lyapunov function a scheme is designed to achieve CLS of chaotic attractors of these systems. The effectiveness of the obtained results is illustrated by a simulation example. Numerical results are plotted to show state variables, modulus errors and phase errors of these chaotic attractors after synchronization to prove that CLS is achieved.

Publisher

Journal

Year

Volume

12

Issue

1

Pages

63-69

Physical description

Dates

published
1 - 1 - 2014
online
2 - 2 - 2014

Contributors

author
  • Department of Mathematics, Umm Al-Qura University, P.O. Box 14949, Makkah, Kingdom of Saudi Arabia

References

  • [1] L. M. Pecora, T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990) http://dx.doi.org/10.1103/PhysRevLett.64.821[Crossref]
  • [2] M. Lakshmanan, K. Murali, Chaos in nonlinear oscillators: controlling and synchronization (World Scientific, Singapore, 1996)
  • [3] S. K. Han, C. Kerrer, Y. Kuramoto, Phys. Rev. Lett. 75, 3190 (1995) http://dx.doi.org/10.1103/PhysRevLett.75.3190[Crossref]
  • [4] B. Blasius, A. Huppert, L. Stone, Nature 399, 354 (1999) http://dx.doi.org/10.1038/20676[Crossref]
  • [5] T. Yang, L. O. Chua, IEEE T. Circuits Syst. I 43, 817 (1996) http://dx.doi.org/10.1109/81.536758[Crossref]
  • [6] S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, C. S. Zhou, Phys. Reports 366, 1 (2002) http://dx.doi.org/10.1016/S0370-1573(02)00137-0[Crossref]
  • [7] A. C. J. Luo, Commun. Nonlinear Sci. Numer. Simulat. 14, 1901 (2009) http://dx.doi.org/10.1016/j.cnsns.2008.07.002[Crossref]
  • [8] R. Femat, G. Solis-Perales, Phys. Lett. A 262, 50 (1997) http://dx.doi.org/10.1016/S0375-9601(99)00667-2[Crossref]
  • [9] A.C. Fowler, J.D. Gibbon, M.J. McGuinness, Physica D 4, 139 (1982) http://dx.doi.org/10.1016/0167-2789(82)90057-4[Crossref]
  • [10] G.M. Mahmoud, M.A. Al-Kashif, S.A. Aly, Int. J. Mod. Phys. C 18, 253 (2007) http://dx.doi.org/10.1142/S0129183107010425[Crossref]
  • [11] G.M. Mahmoud, T. Bountis, E.E. Mahmoud, Int. J. Bifurcat. Chaos 17, 4295 (2007) http://dx.doi.org/10.1142/S0218127407019962[Crossref]
  • [12] G.M. Mahmoud, T. Bountis, G.M. AbdEl-Latif, E.E. Mahmoud, Nonlinear Dyn. 55, 43 (2009) http://dx.doi.org/10.1007/s11071-008-9343-5[Crossref]
  • [13] E.E Mahmoud, Mathematical and Computer Modelling 55, 1951 (2012) http://dx.doi.org/10.1016/j.mcm.2011.11.053[Crossref]
  • [14] G.M. Mahmoud, E.E. Mahmoud, Nonlinear Dyn. 67, 1613 (2012) http://dx.doi.org/10.1007/s11071-011-0091-6[Crossref]
  • [15] E.E Mahmoud, J. Franklin Inst. 349, 1247 (2012) http://dx.doi.org/10.1016/j.jfranklin.2012.01.010[Crossref]
  • [16] E.E. Mahmoud, Appl. Math. Inf. Sci. 7, 1429 (2013) http://dx.doi.org/10.12785/amis/070422[Crossref]
  • [17] G.M. Mahmoud, E.E. Mahmoud, Int. J. Bifurcat. Chaos 21, 2369 (2011) http://dx.doi.org/10.1142/S0218127411029859[Crossref]
  • [18] E.E. Mahmoud, Mathematics and Computers in Simulation 89, 69 (2013) http://dx.doi.org/10.1016/j.matcom.2013.02.008[Crossref]
  • [19] G.M. Mahmoud, E.E. Mahmoud, Mathematics and Computers in Simulation 80, 2286 (2010) http://dx.doi.org/10.1016/j.matcom.2010.03.012[Crossref]
  • [20] F. Nian, X. Wang, Y. Niu, D. Lin, Applied Mathematics and Computation 217, 2481 (2010) http://dx.doi.org/10.1016/j.amc.2010.07.059[Crossref]
  • [21] Z. Wu, J. Duan, X. Fu, Nonlinear Dyn. 69, 711–719 (2012)
  • [22] E.E. Mahmoud, Mathematical Methods in the Applied Sciences, DOI: 10.1002/mma.2793 [Crossref]
  • [23] G.M. Mahmoud, E.E. Mahmoud, Nonlinear Dyn. 73, 2231 (2013) http://dx.doi.org/10.1007/s11071-013-0937-1[Crossref]
  • [24] M. Hu, Y. Yang, Z. Xu, L. Guo, Mathematics and Computers in Simulation 79, 449 (2008) http://dx.doi.org/10.1016/j.matcom.2008.01.047[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-013-0324-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.