Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 11 | 12 | 1662-1673

Article title

Finite size effects in epidemic spreading: the problem of overpopulated systems

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this paper we analyze the impact of network size on the dynamics of epidemic spreading. In particular, we investigate the pace of infection in overpopulated systems. In order to do that, we design a model for epidemic spreading on a finite complex network with a restriction to at most one contamination per time step, which can serve as a model for sexually transmitted diseases spreading in some student communes. Because of the highly discrete character of the process, the analysis cannot use the continuous approximation widely exploited for most models. Using a discrete approach, we investigate the epidemic threshold and the quasi-stationary distribution. The main results are two theorems about the mixing time for the process: it scales like the logarithm of the network size and it is proportional to the inverse of the distance from the epidemic threshold.

Publisher

Journal

Year

Volume

11

Issue

12

Pages

1662-1673

Physical description

Dates

published
1 - 12 - 2013
online
20 - 12 - 2013

References

  • [1] R. M. Anderson, R. M. May, Infectious Diseases of Humans, Dynamics and Control (Oxford University Press, Oxford, 1992) [PubMed]
  • [2] M. E. J. Newman, SIAM Rev. 45, 167 (2003) http://dx.doi.org/10.1137/S003614450342480[Crossref]
  • [3] M. Boguñá, C. Castellano, R. Pastor-Satorras, Phys. Rev. Lett. 111, 068701 (2013) http://dx.doi.org/10.1103/PhysRevLett.111.068701[Crossref]
  • [4] C. Buono, F. Vazquez, P. A. Macri, L. A. Braunstein, Phys. Rev. E 88, 022813 (2013) http://dx.doi.org/10.1103/PhysRevE.88.022813[Crossref]
  • [5] A. S. Mata, S. C. Ferreira, Europhys. Lett. 103, 48003 (2013) http://dx.doi.org/10.1209/0295-5075/103/48003[Crossref]
  • [6] X.-L. Peng, X.-J. Xu, X. Fu, T. Zhou, Phys. Rev. E 87, 022813 (2013) http://dx.doi.org/10.1103/PhysRevE.87.022813[Crossref]
  • [7] A. S. Saumell-Mendiola, M. Ángeles Serrano, M. Boguñá, Phys. Rev. E 86, 026106 (2012) http://dx.doi.org/10.1103/PhysRevE.86.026106[Crossref]
  • [8] A. Barrat, M. Barthélemy, A. Vespignani, Dynamical Processes on Complex Networks (Cambridge University Press, Cambridge, 2008) http://dx.doi.org/10.1017/CBO9780511791383[Crossref]
  • [9] W. Ganczarek, arXiv:1307.5503 [physics.soc-ph]
  • [10] R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 86, 3200 (2001) http://dx.doi.org/10.1103/PhysRevLett.86.3200[Crossref]
  • [11] R. Pastor-Satorras, A. Vespignani, Evolution and Structure of the Internet: A Statistical Physics Approach (Cambridge University Press, Cambridge, 2004) http://dx.doi.org/10.1017/CBO9780511610905[Crossref]
  • [12] M. Boguñá, R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 90, 028701 (2003) http://dx.doi.org/10.1103/PhysRevLett.90.028701[Crossref]
  • [13] S. Gómez, A. Arenas, J. Borge-Holthoefer, S. Meloni, Y. Moreno, Europhys. Lett. 89, 38009 (2010) http://dx.doi.org/10.1209/0295-5075/89/38009[Crossref]
  • [14] M. Boguñá, R. Pastor-Satorras, Phys. Rev. E 68, 036112 (2003) http://dx.doi.org/10.1103/PhysRevE.68.036112[Crossref]
  • [15] Y. Moreno, J. B. Gómez, A. F. Pacheco, Phys. Rev. E 68, 035103 (2003) http://dx.doi.org/10.1103/PhysRevE.68.035103[Crossref]
  • [16] A. V. Goltsev, S. N. Dorogovtsev, J. G. Oliveira, J. F. F. Mendes, Phys. Rev. Lett. 109, 128702 (2012) http://dx.doi.org/10.1103/PhysRevLett.109.128702[Crossref]
  • [17] H. K. Lee, P.-S. Shim, J. D. Noh, Phys. Rev. E 87, 062812 (2013) http://dx.doi.org/10.1103/PhysRevE.87.062812[Crossref]
  • [18] T. Petermann, P. De Los Rios, J. Theor. Biol. 229, 1 (2004) http://dx.doi.org/10.1016/j.jtbi.2004.02.017[Crossref]
  • [19] R. Pastor-Satorras, A. Vespignani, Phys. Rev. E 65, 035108(R) (2002) http://dx.doi.org/10.1103/PhysRevE.65.035108[Crossref]
  • [20] T. E. Harris, Ann. Probab. 2, 969 (1974) http://dx.doi.org/10.1214/aop/1176996493[Crossref]
  • [21] M. Boguñá, C. Castellano, R. Pastor-Satorras, Phys. Rev. E 79, 036110 (2009) http://dx.doi.org/10.1103/PhysRevE.79.036110[Crossref]
  • [22] Y. Li, D. Han, J. Stat. Phys. 153, 312 (2013) http://dx.doi.org/10.1007/s10955-013-0832-7[Crossref]
  • [23] G. Odor, EPJ Web of Conferences 44, 04005 (2013) http://dx.doi.org/10.1051/epjconf/20134404005[Crossref]
  • [24] A. Sinclair, Algorithms for random generation and counting: a Markov chain approach (Birkhauser Verlag, Boston-Basel-Berlin, 1993) http://dx.doi.org/10.1007/978-1-4612-0323-0[Crossref]
  • [25] E. N. Gilbert, Ann. Math. Stat. 30, 1141 (1959) http://dx.doi.org/10.1214/aoms/1177706098[Crossref]
  • [26] M. E. J. Newman, Phys. Rev. Lett. 89, 208701 (2002) http://dx.doi.org/10.1103/PhysRevLett.89.208701[Crossref]
  • [27] D. Shah, Found. Trends Net. 3, 1 (2009) http://dx.doi.org/10.1561/1300000014[Crossref]
  • [28] D. J. Watts, S. H. Strogatz, Nature 393, 440 (1998) http://dx.doi.org/10.1038/30918[Crossref]
  • [29] M. E. J. Newman, Networks: An introduction (Oxford University Press, Oxford, 2011)
  • [30] A. M. Yaglom, Dokl. Acad. Nauk SSSR 56, 795 (1947) (in Russian)
  • [31] J. N. Darroch, E. Seneta, J. Appl. Prob. 2, 88 (1965) http://dx.doi.org/10.2307/3211876[Crossref]
  • [32] E. Seneta, D. Vere-Jones, J. Appl. Prob. 3, 403 (1966) http://dx.doi.org/10.2307/3212128[Crossref]
  • [33] J. N. Darroch, E. Seneta, J. Appl. Prob. 4, 192 (1967) http://dx.doi.org/10.2307/3212311[Crossref]
  • [34] R. L. Tweedie, J. Appl. Probab. 35, 517 (1998) http://dx.doi.org/10.1239/jap/1032265201[Crossref]
  • [35] D. J. Daley, Ann. Math. Statist. 40, 532 (1969) http://dx.doi.org/10.1214/aoms/1177697721[Crossref]
  • [36] M. Buiculescu, J. Appl. Probab. 12, 60 (1975) http://dx.doi.org/10.2307/3212407[Crossref]
  • [37] E. A. van Doorn, P. K. Pollett, Eur. J. Oper. Res. 230, 1 (2013) http://dx.doi.org/10.1016/j.ejor.2013.01.032[Crossref]
  • [38] R. S. Sander, S. C. Ferreira, R. Pastor-Satorras, Phys. Rev. E 87, 022820 (2013) http://dx.doi.org/10.1103/PhysRevE.87.022820[Crossref]
  • [39] P. Brémaud, Markov Chains, Gibbs Fields, Monte Carlo Simulations and Queues (Springer-Verlag, New York, 1999)
  • [40] E. Seneta, Non-negative Matrices and Markov Chains (Springer Science+Business Media, New York, 2006)
  • [41] F. R. Gantmacher, Applications of the Theory of Matrices (Interscience Publishers, New York, 1959)
  • [42] L. B. Koralov, Y. G. Sinai, Theory of Probability and Random Processes (Springer-Verlag, Berlin, 2007) http://dx.doi.org/10.1007/978-3-540-68829-7[Crossref]
  • [43] L. A. Breyer, R. O. Roberts, Stoc. Proc. Appl. 84, 177 (1999) http://dx.doi.org/10.1016/S0304-4149(99)00018-6[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-013-0312-3
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.