PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 11 | 8 | 969-976
Article title

Is gravitational mass of a composite quantum body equivalent to its energy?

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
We define passive gravitational mass operator of a hydrogen atom in the post-Newtonian approximation of general relativity and show that it does not commute with energy operator, taken in the absence of gravitational field. Nevertheless, the equivalence between the expectation values of passive gravitational mass and energy is shown to survive for stationary quantum states. Inequivalence between passive gravitational mass and energy at a macroscopic level results in time dependent oscillations of the expectation values of passive gravitational mass for superpositions of stationary quantum states, where the equivalence restores after averaging over time. Inequivalence between gravitational mass and energy at a microscopic level reveals itself as unusual electromagnetic radiation, emitted by the atoms, supported and moved in the Earth gravitational field with constant velocity using spacecraft or satellite, which can be experimentally measured.
Publisher
Journal
Year
Volume
11
Issue
8
Pages
969-976
Physical description
Dates
published
1 - 8 - 2013
online
23 - 10 - 2013
References
  • [1] R. Colella, A. W. Overhauser, S. A. Werner, Phys. Rev. Lett. 34, 1472 (1975) http://dx.doi.org/10.1103/PhysRevLett.34.1472[Crossref]
  • [2] V. V. Nesvizhevsky et al., Nature 415, 297 (2002) http://dx.doi.org/10.1038/415297a[Crossref]
  • [3] S. W. Hawking, Nature 248, 30 (1974) http://dx.doi.org/10.1038/248030a0[Crossref]
  • [4] W. G. Unruh, Phys. Rev. D 14, 870 (1976) http://dx.doi.org/10.1103/PhysRevD.14.870[Crossref]
  • [5] L. D. Landau, E. M. Lifshitz, The Classical Theory of Fields, 4th edition (Butterworth-Heineman, Amsterdam, 2003)
  • [6] C. W. Misner, P. Putnam, Phys. Rev. 116, 1045 (1959) http://dx.doi.org/10.1103/PhysRev.116.1045[Crossref]
  • [7] K. Nordtvedt, Class. Quantum Grav. 11, A119 (1994) http://dx.doi.org/10.1088/0264-9381/11/6A/009[Crossref]
  • [8] S. Carlip, Am. J. Phys. 66, 409 (1998) http://dx.doi.org/10.1119/1.18885[Crossref]
  • [9] D. Park, Introduction to the Quantum Theory, 3rd edition (Dover Publications, New York, 2005)
  • [10] A. G. Lebed, arXiv:1111.5365v1 [gr-qc]; arXiv:1205.3134v1 [gr-qc] [WoS]
  • [11] A. G. Lebed, In Proceedings of the 13th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, July 1–7, 2012, Stockholm, Sweden (World Scientific, to be published) [arXiv:1208.5756v1 [gr-qc]]
  • [12] C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation (W.H. Freeman and Co, San Francisco, 1973)
  • [13] E. Fischbach, B. S. Freeman, W. K. Cheng, Phys. Rev. D 23, 2157 (1981) http://dx.doi.org/10.1103/PhysRevD.23.2157[Crossref]
  • [14] F. Pinto, Phys. Rev. Lett. 70, 3839 (1993) http://dx.doi.org/10.1103/PhysRevLett.70.3839[Crossref]
  • [15] L. Parker, Phys. Rev. Lett. 44, 1559 (1980) http://dx.doi.org/10.1103/PhysRevLett.44.1559[Crossref]
  • [16] L. Parker, Phys. Rev. D 2, 535 (1981) http://dx.doi.org/10.1103/PhysRevD.24.535[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0302-5
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.