PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 11 | 11 | 1616-1622
Article title

Experimental investigation of supersonic flow over elliptic surface

Content
Title variants
Languages of publication
EN
Abstracts
EN
The coherent structures of flow over a compression elliptic surface are experimentally investigated in a supersonic low-noise wind tunnel at Mach Number 3 using nano-tracer planar laser scattering (NPLS) and particle image velocimetry (PIV) techniques. High spacial resolution images and the average velocity profiles of both laminar inflow and turbulent inflow over the testing model were captured. From statistically significant ensembles, spatial correlation analysis of both cases is performed to quantify the mean size and orientation of large structures. The results indicate that the mean structure is elliptical in shape and structure angles in separated region of laminar inflow are slightly smaller than that of turbulent inflow. Moreover, the structure angle of both cases increases with its distance away from from the wall. POD analysis of velocity and vorticity fields is performed for both cases. The energy portion of the first mode for the velocity data is much larger than that for the vorticity field. For vorticity decompositions, the contribution from the first mode for the laminar inflow is slightly larger than that for the turbulent inflow and the cumulative contributions for laminar inflow converges slightly faster than that for turbulent inflow
Publisher

Journal
Year
Volume
11
Issue
11
Pages
1616-1622
Physical description
Dates
published
1 - 11 - 2013
online
10 - 12 - 2013
Contributors
author
  • College of Aerospace Science and Engineering, National University of Defense Technology, 410073, Changsha, China, zhang_qinghu@163.com
author
  • College of Aerospace Science and Engineering, National University of Defense Technology, 410073, Changsha, China
author
  • College of Aerospace Science and Engineering, National University of Defense Technology, 410073, Changsha, China, ysh_1819@126.com
author
  • College of Aerospace Science and Engineering, National University of Defense Technology, 410073, Changsha, China
author
  • College of Aerospace Science and Engineering, National University of Defense Technology, 410073, Changsha, China
References
  • [1] C. J. Bourdon, J. C. Dutton, Phys. Fluids 11, 201 (1999) http://dx.doi.org/10.1063/1.869913[Crossref]
  • [2] K. M. Smith, J. C. Dutton, AIAA J. 34, 1146 (1996) http://dx.doi.org/10.2514/3.13205[Crossref]
  • [3] D. Papamoschou, A. Bunyajitradulya, Phys. Fluids 9, 756 (1997) http://dx.doi.org/10.1063/1.869230[Crossref]
  • [4] J. Poggie, P. J. Erbland, A. J. Smits, R. B. Miles, Exp. Fluids 37, 438 (2004)
  • [5] P. Bookey, C. Wyckham, A. J. Smits, M. P. Martin, AIAA Aerospace Sciences Meeting and Exhibit, Jan. 10–13, 2005, Reno, Nevada (AIAA Inc., Reno, Nevada, 2005) 309
  • [6] R. A. Humble, S. J. Peltier, K. P. Lynch, B. S. Thurow, R. W. D. Bowersox, 41st AIAA Fluid Dynamics Conference and Exhibit, June 27–30, 2011, Honolulu, Hawaii (AIAA Inc., Honolulu, Hawaii, 2011) 3419
  • [7] B. Ganapathisubramani, N. T. Clemens, D. S. Dolling, J. Fluid Mech. 585, 369 (2007) http://dx.doi.org/10.1017/S0022112007006799[Crossref]
  • [8] M. J. Ringuette, P. Bookey, C. Wyckham, A. J. Smits, AIAA J. 47, 373 (2009) http://dx.doi.org/10.2514/1.38248[Crossref]
  • [9] F. F. J. Schrijer, F. Scarano, B. W. van Oudheusden, Exp. Fluids 41, 353 (2006) http://dx.doi.org/10.1007/s00348-006-0140-y[Crossref]
  • [10] G. Berkooz, P. Holemes, J. L. Lumely, Annu. Rev. Fluid Mech. 25, 539 (1993) http://dx.doi.org/10.1146/annurev.fl.25.010193.002543[Crossref]
  • [11] J. Boree, Exp. Fluids 35, 188 (2003) http://dx.doi.org/10.1007/s00348-003-0656-3[Crossref]
  • [12] J. Kostas, J. Soria, M. S. Chong, Exp. Fluids 38, 146 (2005) http://dx.doi.org/10.1007/s00348-004-0873-4[Crossref]
  • [13] R. Gurka, A. Liberzon, G. Hetsroni, Int. Heat and Fluid Flow 27, 416 (2006) http://dx.doi.org/10.1016/j.ijheatfluidflow.2006.01.001[Crossref]
  • [14] Q. Yang, S. Fu, Sci. China Ser G-Phy Mech. Astron. 51, 541 (2008) http://dx.doi.org/10.1007/s11433-008-0029-2[Crossref]
  • [15] R. Kellnerova, L. Kukacka, K. Jurcakova, V. Uruba, Z. Janour, J. Physicc: Conference Series 318, 062012 (2011)
  • [16] R. Kellnerova, L. Kukacka, K. Jurcakova, V. Uruba, Z. Janour, J. Wind Eng. Ind. Aerodyn. 104-106, 302 (2012) http://dx.doi.org/10.1016/j.jweia.2012.02.017[Crossref]
  • [17] S. Pirozzoli, M. Bernardini, F. Grasso, J. Fluid. Mech. 648, 325 (2010) http://dx.doi.org/10.1017/S0022112009993156[Crossref]
  • [18] R. J. Adrian, C. D. Meinhart, C. D. Tomkins, J. Fluid. Mech. 422, 1 (2000) http://dx.doi.org/10.1017/S0022112000001580[Crossref]
  • [19] J. Heinloo, Cent. Eur. J. Phys. 8, 17 (2010) http://dx.doi.org/10.2478/s11534-009-0015-y[Crossref]
  • [20] Y. X. Zhao, S. H. Yi, L. F. Tian, Z. Y. Chen, Sci. China Ser. E 52, 3640 (2009) http://dx.doi.org/10.1007/s11431-009-0281-3[Crossref]
  • [21] L. He, S. H. Yi, Y. X. Zhao, L. F. Tian, Z. Chen, Chin. Sci. Bull. 56, 489 (2011) http://dx.doi.org/10.1007/s11434-010-4312-z[Crossref]
  • [22] B. Wang, W. D. Liu, Y. X. Zhao, X. Q. Fan, C. Wang, Phys. Fluids 24, 055110 (2012) http://dx.doi.org/10.1063/1.4719146[Crossref]
  • [23] Z. Chen, S. H. Yi, L. F. Tian L. He, Y. Z. Zhu, Shock waves 23, 299 (2013) http://dx.doi.org/10.1007/s00193-012-0378-7[Crossref]
  • [24] Q. Gao, S. H. Yi, F. J. Jiang, L. He, Y. X. Zhao, Opt. Express 20, 16494 (2012) http://dx.doi.org/10.1364/OE.20.016494[Crossref]
  • [25] Q. Gao, F. J. Jiang, S. H. Yi, K. W. Xie, T. H. Tian, Appl. Opt. 51, 3922 (2012) http://dx.doi.org/10.1364/AO.51.003922[Crossref]
  • [26] A. W. Fitzgibbon, M. Pilu, R. B. Fisher, IEEE Trans. on Pattern Analys. Machi. Intellig. 21, 476 (1999) http://dx.doi.org/10.1109/34.765658[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0298-x
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.