Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 11 | 10 | 1221-1232

Article title

Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term

Content

Title variants

Languages of publication

EN

Abstracts

EN
Fractional differential equations have attracted considerable interest because of their ability to model anomalous transport phenomena. Space fractional diffusion equations with a nonlinear reaction term have been presented and used to model many problems of practical interest. In this paper, a two-dimensional Riesz space fractional diffusion equation with a nonlinear reaction term (2D-RSFDE-NRT) is considered. A novel alternating direction implicit method for the 2D-RSFDE-NRT with homogeneous Dirichlet boundary conditions is proposed. The stability and convergence of the alternating direction implicit method are discussed. These numerical techniques are used for simulating a two-dimensional Riesz space fractional Fitzhugh-Nagumo model. Finally, a numerical example of a two-dimensional Riesz space fractional diffusion equation with an exact solution is given. The numerical results demonstrate the effectiveness of the methods. These methods and techniques can be extended in a straightforward method to three spatial dimensions, which will be the topic of our future research.

Publisher

Journal

Year

Volume

11

Issue

10

Pages

1221-1232

Physical description

Dates

published
1 - 10 - 2013
online
19 - 12 - 2013

Contributors

author
  • School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Qld., 4001, Australia
author
  • Department of Mathematics, Quanzhou Normal University, Quanzhou, Fujian, China
author
  • School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Qld., 4001, Australia
author
author
  • School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Qld., 4001, Australia

References

  • [1] L. M. Pismen, Patterns and Interfaces in Dissipative Systems (Springer Verlag, Berlin, 2006) 163–169
  • [2] S. B. Yuste, K. Lindenberg, Phys. Rev. Lett. 87, 118301 (2001) http://dx.doi.org/10.1103/PhysRevLett.87.118301[Crossref]
  • [3] S. B. Yuste, L. Acedo, K. Lindenberg, Phys. Rev. E 69, 036126 (2004) http://dx.doi.org/10.1103/PhysRevE.69.036126[Crossref]
  • [4] R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000) http://dx.doi.org/10.1016/S0370-1573(00)00070-3[Crossref]
  • [5] S. Picozzi, B. West, Phys. Rev. E 66, 046118 (2002) http://dx.doi.org/10.1103/PhysRevE.66.046118[Crossref]
  • [6] F. Liu, V. Anh, I. Turner, J. Comp. Appl. Math. 166, 209 (2004) http://dx.doi.org/10.1016/j.cam.2003.09.028[Crossref]
  • [7] F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrage, Appl. Math. Comp. 191, 12 (2007) http://dx.doi.org/10.1016/j.amc.2006.08.162[Crossref]
  • [8] I. Podlubny, Fractional Differential Equations (Academic Press, London and New York, 1999)
  • [9] D. Baleanu, Rep. Math. Phys. 61, 199 (2008) http://dx.doi.org/10.1016/S0034-4877(08)80007-9[Crossref]
  • [10] E. M. Rabei, I. M. Rawashdeh, S. Muslih, D. Baleanu, Int. J. Theor. Phys. 50, 1569 (2011) http://dx.doi.org/10.1007/s10773-011-0668-3[Crossref]
  • [11] F. Jarad, T. Abdeljawad, D. Baleanu, Abstr. App. Anal. 2012, 8903976 (2012)
  • [12] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus Models and Numerical Methods, Series on Com plexity, Nonlinearity and Chaos (World Scientific, Singapore, 2012)
  • [13] J. A. Ochoa-Tapia, F. J. Valdes-Parada, J. Alvarez-Ramirez, Physica A 374, 1 (2007) http://dx.doi.org/10.1016/j.physa.2006.07.033[Crossref]
  • [14] F. J. Valdes-Parada, J. A. Ochoa-Tapia, J. Alvarez-Ramirez, Physica A 373, 339 (2007) http://dx.doi.org/10.1016/j.physa.2006.06.007[Crossref]
  • [15] J. H. Cushman, B. X. Hu, T. R. Ginn, J. Stat. Phy. 75, 859 (1994) http://dx.doi.org/10.1007/BF02186747[Crossref]
  • [16] D. Del-Castillo-Negrete, Phys. Rev. E 79, 031120 (2009) http://dx.doi.org/10.1103/PhysRevE.79.031120[Crossref]
  • [17] V. B. L. Chaurasia, J. Singh, Appl. Math. Sci. 60, 2989 (2011)
  • [18] R. Gorenflo, F. Mainardi, Fractional Calc. App. Anal. 1, 167 (1998)
  • [19] M. M. Meerschaert, H. P. Scheffler, C. Tadjeran, J. Comput. Phys. 211, 249 (2006) http://dx.doi.org/10.1016/j.jcp.2005.05.017[Crossref]
  • [20] R. FitzHugh, Biophys. J. 1, 445 (1961) http://dx.doi.org/10.1016/S0006-3495(61)86902-6[Crossref]
  • [21] J. Nagumo, S. Animoto, S. Yoshizawa, Proc. Inst. Radio Eng. 50, 2061 (1962)
  • [22] A. Bueno-Orovio, D. Kay, K. Burrage, J. Comp. Phys. (in press)
  • [23] Y. Zhang, D. A. Benson, D. M. Reeves, Adv. Water Resour. 32, 561 (2009) http://dx.doi.org/10.1016/j.advwatres.2009.01.008[Crossref]
  • [24] S. Chen, F. Liu, I. Turner, V. Anh, App. Math. Comput. 219, 4322 (2013) http://dx.doi.org/10.1016/j.amc.2012.10.003[Crossref]
  • [25] Q. Yu, F. Liu, I. Turner, K. Burrage, Appl. Math. Comp. 219, 4082 (2013) http://dx.doi.org/10.1016/j.amc.2012.10.056[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-013-0296-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.