PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 11 | 10 | 1463-1469
Article title

Legendre multiwavelet collocation method for solving the linear fractional time delay systems

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this article the Legendre multiwavelet basis with aid of collocation method has been applied to give approximate solution for fractional delay systems. The properties of Legendre multiwavelet are presented. These properties together with the collocation method are then utilized to reduce the problem to the solution of algebraic system. Numerical results and comparison with exact solutions in the cases when we have exact solution are given in test examples in order to demonstrate the applicability and efficiency of the method.
Publisher

Journal
Year
Volume
11
Issue
10
Pages
1463-1469
Physical description
Dates
published
1 - 10 - 2013
online
19 - 12 - 2013
Contributors
  • Department of Mathematics, Shahid Beheshti University, G.C. Tehran, Iran, s-yousefi@sbu.ac.ir
author
  • Department of Mathematics, Shahid Beheshti University, G.C. Tehran, Iran
References
  • [1] R.L. Bagley, P.J. Torvik, J. Rheol. 27, 201 (1983) http://dx.doi.org/10.1122/1.549724[Crossref]
  • [2] R.L. Bagley, P.J. Torvik, AIAA J. 23, 918 (1985) http://dx.doi.org/10.2514/3.9007[Crossref]
  • [3] R. L. Magin, Crit. Rev. Biomed. Eng. 32, 1 (2004) http://dx.doi.org/10.1615/CritRevBiomedEng.v32.10[Crossref]
  • [4] T. S. Chow, Phys. Lett. A. 342, 148 (2005) http://dx.doi.org/10.1016/j.physleta.2005.05.045[Crossref]
  • [5] M. Zamani, M. Karimi-Ghartemani, N. Sadati, Journal of Fractional Calculus and Applied Analysis (FCAA) 10, 169 (2007)
  • [6] J.A. Machado, Syst. Anal. Model. Sim. 27, 107 (1997)
  • [7] I.S. Jesus, J.A. Machado, Nonlinear Dynam. 54, 263 (2008) http://dx.doi.org/10.1007/s11071-007-9322-2[Crossref]
  • [8] I. Podlubny, IEEE T. Automat. Contr. 44, 208 (1999) http://dx.doi.org/10.1109/9.739144[Crossref]
  • [9] X. Zhang, Appl. Math. Comput. 197, 407 (2008) http://dx.doi.org/10.1016/j.amc.2007.07.069[Crossref]
  • [10] W. deng, C. Li, J. Lu, Nonlinear Dynam. 48, 409 (2007) http://dx.doi.org/10.1007/s11071-006-9094-0[Crossref]
  • [11] M. P. Lazarevic, A. M. Spasic, Math. Comput. Model. 49, 475 (2009) http://dx.doi.org/10.1016/j.mcm.2008.09.011[Crossref]
  • [12] C.K. Chui, Wavelets: A mathematical tool for signal analysis (SIAM, Philadelphia PA, 1997) http://dx.doi.org/10.1137/1.9780898719727[Crossref]
  • [13] Q. Ming, C. Hwang, Y.P. Shih, Int. J. Numer. Meth. Eng. 39, 2921 (1996) http://dx.doi.org/10.1002/(SICI)1097-0207(19960915)39:17<2921::AID-NME983>3.0.CO;2-D[Crossref]
  • [14] G. Beylkin, R. Coifman, V. Rokhlinn, Commun. Pur. Appl. Math. 44, 141 (1991) http://dx.doi.org/10.1002/cpa.3160440202[Crossref]
  • [15] S. A. Yousefi, A. Lotfi, M. Dehghan, J. Vib. Control 17, 2059 (2011) http://dx.doi.org/10.1177/1077546311399950[Crossref]
  • [16] A. Saadatmandi, M. Dehghan, J. Vib. Control 17, 2050 (2011) http://dx.doi.org/10.1177/1077546310395977[Crossref]
  • [17] S. A. Yousefi, Numer. Meth. Part. D. E. 26, 535 (2010)
  • [18] C. Canuto, M. Y. Hussaini, A. Quarternioni, T. A. Zang, Spectral methods in fluid dynamics (Springer-Verlag, Berlin, 1988) http://dx.doi.org/10.1007/978-3-642-84108-8[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0283-4
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.