PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 11 | 10 | 1440-1456
Article title

Finite difference scheme for the time-space fractional diffusion equations

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper, we derive two novel finite difference schemes for two types of time-space fractional diffusion equations by adopting weighted and shifted Gr├╝nwald operator, which is used to approximate the Riemann-Liouville fractional derivative to the second order accuracy. The stability and convergence of the schemes are analyzed via mathematical induction. Moreover, the illustrative numerical examples are carried out to verify the accuracy and effectiveness of the schemes.
Publisher
Journal
Year
Volume
11
Issue
10
Pages
1440-1456
Physical description
Dates
published
1 - 10 - 2013
online
19 - 12 - 2013
References
  • [1] I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)
  • [2] K.B. Oldham, J. Spanier, The Fractional Calculus. Theory and Applications of Differentiation and Integration to Arbitrary Order (Academic Press, New York, 1974)
  • [3] R. Hilfer, J. Phys. Chem. B 104, 3914 (2000) http://dx.doi.org/10.1021/jp9936289[Crossref]
  • [4] W.R. Schneider, W. Wyss, J. Math. Phys. 30, 134 (1989) http://dx.doi.org/10.1063/1.528578[Crossref]
  • [5] F. Sntamaria, S. Wils, E. D. Schutter, G. J. Augustine, Neuron. 52, 635 (2008) http://dx.doi.org/10.1016/j.neuron.2006.10.025[Crossref]
  • [6] M. Saxton, Bioplys. 81, 2226 (2001)
  • [7] R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000) http://dx.doi.org/10.1016/S0370-1573(00)00070-3[Crossref]
  • [8] E.A. Abdel-Rehim, R. Gorenflo, J. Comput. Appl. 222, 274 (2008) http://dx.doi.org/10.1016/j.cam.2007.10.052[Crossref]
  • [9] D. Fulger, E. Scalas, G. Germano, Phys. Rev E. 77, 021122 (2008) http://dx.doi.org/10.1103/PhysRevE.77.021122[Crossref]
  • [10] F. Liu, Q. Liu, I. Turner, V. Anh, J. Comput. Phys. 222, 57 (2007) http://dx.doi.org/10.1016/j.jcp.2006.06.005[Crossref]
  • [11] R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, Chem. Phys. 284, 521 (2002) http://dx.doi.org/10.1016/S0301-0104(02)00714-0[Crossref]
  • [12] M.M. Meerscharet, D.A. Benson, H.-P, B. Baeumer, Phys. Rev. E 65, 1103 (2002)
  • [13] W.Y. Tian, H. Zhou, W.H. Deng, arXiv:1201.5949v3[math.NA]
  • [14] T.A.M. Langlands, B.I. Henry, J. Comput. Phys. 205, 719 (2005) http://dx.doi.org/10.1016/j.jcp.2004.11.025[Crossref]
  • [15] Z.Z. Sun, X.N. Wu, Appl. Numer. Math. 56, 193 (2006) http://dx.doi.org/10.1016/j.apnum.2005.03.003[Crossref]
  • [16] S.B. Yuste, L. Acedo, SIAM J. Numer. Anal. 42, 1862 (2005) http://dx.doi.org/10.1137/030602666[Crossref]
  • [17] C. Chen, F. Liu, I. Turner, V. Anh, J. Comput. Phys. 227, 886 (2007) http://dx.doi.org/10.1016/j.jcp.2007.05.012[Crossref]
  • [18] C.P. Li, Z.G. Zhao, Y.Q. Chen, Comput. Math. Appl. 62, 855 (2011) http://dx.doi.org/10.1016/j.camwa.2011.02.045[Crossref]
  • [19] H.F. Ding, C.P. Li, J. Comput. Phys. 242, 103 (2013) http://dx.doi.org/10.1016/j.jcp.2013.02.014[Crossref]
  • [20] G.H. Gao, Z.Z. Sun, J. Comput. Phys. 230, 586 (2011) http://dx.doi.org/10.1016/j.jcp.2010.10.007[Crossref]
  • [21] M.M. Meerscharet, C. Tadjeran, J. Comput. Appl. Math. 172, 65 (2004) http://dx.doi.org/10.1016/j.cam.2004.01.033[Crossref]
  • [22] Y.M. Lin, C.J. Xu, J. Comput. Phys. 225, 1533 (2007) http://dx.doi.org/10.1016/j.jcp.2007.02.001[Crossref]
  • [23] R.R. Nigmatullin, Theor. Math. Phys. 90, 242 (1992) http://dx.doi.org/10.1007/BF01036529[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0261-x
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.