Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN

enabled [disable] Abstract
Number of results

## Open Physics

2013 | 11 | 8 | 995-1005

## Conditions governing the generalisation of threshold bound states by N attractive delta potentials in one and three dimensions

EN

### Abstracts

EN
This paper proves that for N attractive delta function potentials the number of bound states (Nb) satisfies 1 ≤ N
b ≤ N in one dimension (1D), and is 0 ≤ N
b ≤ N in three dimensions (3D). Algebraic equations are obtained to evaluate the bound states generated by N attractive delta potentials. In particular, in the case of N attractive delta function potentials having same separation a between adjacent wells and having the same strength λV, the parameter g=λVa governs the number of bound states. For a given N in the range 1–7, both in 1D and 3D cases the numerical values of gn, where n=1,2,..N are obtained. When g=gn, Nb ≤ n where Nb includes one threshold energy bound state. Furthermore, gn are the roots of the Nth order polynomial equations with integer coefficients. Based on our numerical calculations up to N=40, even when N becomes large, 0 ≤ g
n ≤ 4 and $\frac{{\Sigma g_n }} {N} \simeq 2$ and this result is expected to be generally valid. Thus, for g > 4 there will be no threshold or zero energy bound state, and if g≈ 2 for a given large N, the number of bound states will be approximately N/2. The empirical formula gn = 4/[1+exp((N
0 − n)/β)] gives a good description of the variation of gn as a function of n. This formula is useful in estimating the number of bound states for any N and g both in 1D and 3D cases.

EN

995-1005

published
1 - 8 - 2013
online
23 - 10 - 2013

### Contributors

author
• Department of Physics, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bangalore, 560035, India
author
• Department of Physics, North Orissa University, Baripada, 757003, India
author
• Department of Physics, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bangalore, 560035, India

### References

•  C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996)
•  K. Gottfried, T.-M. Yan, Quantum Mechanics: Fundamental (Springer-Verlag, New York, 2003) http://dx.doi.org/10.1007/978-0-387-21623-2[Crossref]
•  D. J. Griffiths, Introduction to Quantum mechanics (Pearson Education, 2005)
•  S. H. Patil, A. S. Roy, Physica A 253, 517 (1998) http://dx.doi.org/10.1016/S0378-4371(97)00644-4[Crossref]
•  B. Sahu, B. Sahu, Phys. Lett. A 373, 4033 (2009) http://dx.doi.org/10.1016/j.physleta.2009.09.018[Crossref]
•  E. Demiralp, H. Beker, J. Phys.A: Math. Gen. 36, 7449 (2003) http://dx.doi.org/10.1088/0305-4470/36/26/315[Crossref]
•  A. K. Jain, S. K. Deb, C. S. Shastry, Am. J. Phys. 46, 147 (1978) http://dx.doi.org/10.1119/1.11375[Crossref]
•  V. Bezák, J. Math. Phys. 37, 5939 (1996) http://dx.doi.org/10.1063/1.531758[Crossref]
•  A. Robinovitch, Am. J. Phys. 53, 768 (1985) http://dx.doi.org/10.1119/1.14310[Crossref]
•  C. Aslangul, Am. J. Phys. 63, 935 (1995) http://dx.doi.org/10.1119/1.18036[Crossref]
•  S. Geltman, Journal of Atomic, Molecular, and Optical Physics, (2011)
•  D. Witthaut, S. Mossmann, H. J. Korsch, J. Phys. A: Math. Gen. 38, 1777 (2005) http://dx.doi.org/10.1088/0305-4470/38/8/013[Crossref]
•  A.-C. Ji, W. M. Liu, J. L. Song, F. Zhou, Phys. Rev. Lett. 101, 010402 (2008) http://dx.doi.org/10.1103/PhysRevLett.101.010402[Crossref]
•  B. Li, X.-F. Zhang, Y.-Q. Li, Y. Chen, W. M. Liu, Phys. Rev. A. 78, 023608 (2008) http://dx.doi.org/10.1103/PhysRevA.78.023608[Crossref]
•  Z. X. Liang, Z. D. Zhang, W. M. Liu, Phys. Rev. Lett. 94, 050402 (2005) http://dx.doi.org/10.1103/PhysRevLett.94.050402[Crossref]
•  G. G. Newton, Scattering theory of Waves and Particles (McGraw-Hill, New York, 1966)

### Identifiers JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.