Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2013 | 11 | 8 | 995-1005

Article title

Conditions governing the generalisation of threshold bound states by N attractive delta potentials in one and three dimensions


Title variants

Languages of publication



This paper proves that for N attractive delta function potentials the number of bound states (Nb) satisfies 1 ≤ N
b ≤ N in one dimension (1D), and is 0 ≤ N
b ≤ N in three dimensions (3D). Algebraic equations are obtained to evaluate the bound states generated by N attractive delta potentials. In particular, in the case of N attractive delta function potentials having same separation a between adjacent wells and having the same strength λV, the parameter g=λVa governs the number of bound states. For a given N in the range 1–7, both in 1D and 3D cases the numerical values of gn, where n=1,2,..N are obtained. When g=gn, Nb ≤ n where Nb includes one threshold energy bound state. Furthermore, gn are the roots of the Nth order polynomial equations with integer coefficients. Based on our numerical calculations up to N=40, even when N becomes large, 0 ≤ g
n ≤ 4 and $\frac{{\Sigma g_n }}
{N} \simeq 2
$ and this result is expected to be generally valid. Thus, for g > 4 there will be no threshold or zero energy bound state, and if g≈ 2 for a given large N, the number of bound states will be approximately N/2. The empirical formula gn = 4/[1+exp((N
0 − n)/β)] gives a good description of the variation of gn as a function of n. This formula is useful in estimating the number of bound states for any N and g both in 1D and 3D cases.










Physical description


1 - 8 - 2013
23 - 10 - 2013


  • Department of Physics, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bangalore, 560035, India
  • Department of Physics, North Orissa University, Baripada, 757003, India
  • Department of Physics, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bangalore, 560035, India


  • [1] C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996)
  • [2] K. Gottfried, T.-M. Yan, Quantum Mechanics: Fundamental (Springer-Verlag, New York, 2003) http://dx.doi.org/10.1007/978-0-387-21623-2[Crossref]
  • [3] D. J. Griffiths, Introduction to Quantum mechanics (Pearson Education, 2005)
  • [4] S. H. Patil, A. S. Roy, Physica A 253, 517 (1998) http://dx.doi.org/10.1016/S0378-4371(97)00644-4[Crossref]
  • [5] B. Sahu, B. Sahu, Phys. Lett. A 373, 4033 (2009) http://dx.doi.org/10.1016/j.physleta.2009.09.018[Crossref]
  • [6] E. Demiralp, H. Beker, J. Phys.A: Math. Gen. 36, 7449 (2003) http://dx.doi.org/10.1088/0305-4470/36/26/315[Crossref]
  • [7] A. K. Jain, S. K. Deb, C. S. Shastry, Am. J. Phys. 46, 147 (1978) http://dx.doi.org/10.1119/1.11375[Crossref]
  • [8] V. Bezák, J. Math. Phys. 37, 5939 (1996) http://dx.doi.org/10.1063/1.531758[Crossref]
  • [9] A. Robinovitch, Am. J. Phys. 53, 768 (1985) http://dx.doi.org/10.1119/1.14310[Crossref]
  • [10] C. Aslangul, Am. J. Phys. 63, 935 (1995) http://dx.doi.org/10.1119/1.18036[Crossref]
  • [11] S. Geltman, Journal of Atomic, Molecular, and Optical Physics, (2011)
  • [12] D. Witthaut, S. Mossmann, H. J. Korsch, J. Phys. A: Math. Gen. 38, 1777 (2005) http://dx.doi.org/10.1088/0305-4470/38/8/013[Crossref]
  • [13] A.-C. Ji, W. M. Liu, J. L. Song, F. Zhou, Phys. Rev. Lett. 101, 010402 (2008) http://dx.doi.org/10.1103/PhysRevLett.101.010402[Crossref]
  • [14] B. Li, X.-F. Zhang, Y.-Q. Li, Y. Chen, W. M. Liu, Phys. Rev. A. 78, 023608 (2008) http://dx.doi.org/10.1103/PhysRevA.78.023608[Crossref]
  • [15] Z. X. Liang, Z. D. Zhang, W. M. Liu, Phys. Rev. Lett. 94, 050402 (2005) http://dx.doi.org/10.1103/PhysRevLett.94.050402[Crossref]
  • [16] G. G. Newton, Scattering theory of Waves and Particles (McGraw-Hill, New York, 1966)

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.