PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 11 | 10 | 1262-1267
Article title

A discrete time method to the first variation of fractional order variational functionals

Content
Title variants
Languages of publication
EN
Abstracts
EN
The fact that the first variation of a variational functional must vanish along an extremizer is the base of most effective solution schemes to solve problems of the calculus of variations. We generalize the method to variational problems involving fractional order derivatives. First order splines are used as variations, for which fractional derivatives are known. The Gr├╝nwald-Letnikov definition of fractional derivative is used, because of its intrinsic discrete nature that leads to straightforward approximations.
Publisher

Journal
Year
Volume
11
Issue
10
Pages
1262-1267
Physical description
Dates
published
1 - 10 - 2013
online
19 - 12 - 2013
Contributors
  • Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193, Aveiro, Portugal, spooseh@ua.pt
  • Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193, Aveiro, Portugal, ricardo.almeida@ua.pt
author
  • Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193, Aveiro, Portugal, delfim@ua.pt
References
  • [1] A. B. Malinowska, D.F.M. Torres, Introduction to the fractional calculus of variations (Imp. Coll. Press, London, 2012)
  • [2] O. P. Agrawal, O. Defterli, D. Baleanu, J. Vib. Control 16, 1967 (2010) http://dx.doi.org/10.1177/1077546309353361[Crossref]
  • [3] O. P. Agrawal, S.I. Muslih, D. Baleanu, Commun. Nonlinear Sci. Numer. Simul. 16, 4756 (2011) http://dx.doi.org/10.1016/j.cnsns.2011.05.002[Crossref]
  • [4] R. Almeida, D.F.M. Torres, Appl. Math. Comput. 217, 956 (2010) http://dx.doi.org/10.1016/j.amc.2010.03.085[Crossref]
  • [5] D. Baleanu, O. Defterli, O.P. Agrawal, J. Vib. Control 15, 583 (2009) http://dx.doi.org/10.1177/1077546308088565[Crossref]
  • [6] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional calculus, Models and numerical methods (World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012)
  • [7] S. Pooseh, R. Almeida, D.F.M. Torres, Comput. Math. Appl. 64, 3090 (2012) http://dx.doi.org/10.1016/j.camwa.2012.01.068[Crossref]
  • [8] A. A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies 204 (Elsevier, Amsterdam, 2006)
  • [9] I. Podlubny, Fractional differential equations (Academic Press, San Diego, CA, 1999)
  • [10] F. Riewe, Phys. Rev. E 55, 3581 (1997) http://dx.doi.org/10.1103/PhysRevE.55.3581[Crossref]
  • [11] O. P. Agrawal, J. Math. Anal. Appl. 272, 368 (2002) http://dx.doi.org/10.1016/S0022-247X(02)00180-4[Crossref]
  • [12] J. Gregory, C. Lin, SIAM J. Numer. Anal. 30, 871 (1993) http://dx.doi.org/10.1137/0730045[Crossref]
  • [13] J. Gregory, R.S. Wang, SIAM J. Numer. Anal. 27, 470 (1990) http://dx.doi.org/10.1137/0727029[Crossref]
  • [14] R. Almeida, R.A.C. Ferreira, D.F.M. Torres, Acta Math. Sci. Ser. B Engl. Ed. 32, 619 (2012)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0250-0
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.