PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 11 | 5 | 601-614
Article title

The analysis of the flow of a micropolar fluid between two orthogonally moving porous disks with counter rotating directions

Content
Title variants
Languages of publication
EN
Abstracts
EN
The present work investigates the unsteady, imcompressible flow of a micropolar fluid between two orthogonally moving porous coaxial disks. The lower and upper disks are rotating with the same angular speed in counter directions. The flows are driven by the contraction and the rotation of the disks. An extension of the Von Kármán type similarity transformation is proposed and is applied to reduce the governing partial differential equations (PDEs) to a set of non-linear coupled ordinary differential equations (ODEs) in dimensionless form. These differential equations with appropriate boundary conditions are responsible for the flow behavior between large but finite coaxial rotating disks. The analytical solutions are obtained by employing the homotopy analysis method. The effects of some various physical parameters like the expansion ratio, the rotational Reynolds number, the permeability Reynolds number, and micropolar parameters on the velocity fields are observed in graphs and discussed in detail.
Publisher

Journal
Year
Volume
11
Issue
5
Pages
601-614
Physical description
Dates
published
1 - 5 - 2013
online
28 - 7 - 2013
Contributors
author
  • Department of Mathematics, University of Science and Technology, Beijing, China, 100083
author
  • Department of Mathematics, University of Science and Technology, Beijing, China, 100083, sixinhui_ustb@126.com
author
  • Department of Mathematics, University of Science and Technology, Beijing, China, 100083
author
  • Department of Mathematics, University of Science and Technology, Beijing, China, 100083
author
  • Department of mechanical engineering, University of Science and Technology, Beijing, China, 100083
References
  • [1] T. Von Kármán, Z. Angew, Math. Mech. 1, 233 (1921)
  • [2] W.G. Cochran, Proc. Camb. Phil. Soc. 30, 365 (1934) http://dx.doi.org/10.1017/S0305004100012561[Crossref]
  • [3] U.T. Böewadt, Z. Angew, Math. Mech. 20, 241 (1940)
  • [4] J.F. Brady, L. Durlofsky, J. Fluid. Mech. 175, 363 (1987) http://dx.doi.org/10.1017/S0022112087000430[Crossref]
  • [5] K. Stewartson, Proc. Cambr. Phil. Soc. 47, 545 (1951) http://dx.doi.org/10.1017/S0305004100026943[Crossref]
  • [6] H.P. Greenspan, Geophys, Astrophys, Fluid Dyn. 15, 1 (1980) http://dx.doi.org/10.1080/03091928008241167[Crossref]
  • [7] I.V. Shevchuk, Int. J. Heat Mass Transfer 45, 1313 (2009). http://dx.doi.org/10.1007/s00231-009-0505-x[Crossref]
  • [8] M.M. Awad, ASME J. Heat Transfer, 130, 014505 (2008). http://dx.doi.org/10.1115/1.2780185[Crossref]
  • [9] M.A. Hossain, A. Hossain, M. Wilson, Int. J. Therm. Sci. 40, 11 (2001) http://dx.doi.org/10.1016/S1290-0729(00)01183-2[Crossref]
  • [10] K.A. Maleque, M.A. Sattar, ASME J. Heat Transfer 127, 1406 (2005) http://dx.doi.org/10.1115/1.2098860[Crossref]
  • [11] A.C. Eringen, Int. J. Math.Anal.Appl. 38, 480 (1972) http://dx.doi.org/10.1016/0022-247X(72)90106-0[Crossref]
  • [12] G.S. Guram, M. Anwar, J. Eng. Math. 13, 223 (1979) http://dx.doi.org/10.1007/BF00036671[Crossref]
  • [13] G.S. Guram, M. Anwar, ZAMM 61, 589 (1981) http://dx.doi.org/10.1002/zamm.19810611107[Crossref]
  • [14] M. Anwar Kamal, M. Ashraf, K.S. Syed, Appl.Math.Comput. 179, 1 (2006) http://dx.doi.org/10.1016/j.amc.2005.11.073[Crossref]
  • [15] M. Ashraf, M. Anwar Kamal, K.S. Syed, Appl.Math.Model. 33, 1933 (2009) http://dx.doi.org/10.1016/j.apm.2008.05.002[Crossref]
  • [16] P. Chaturani, S. Narasimman, Acta Mech., 89, 133 (1991) http://dx.doi.org/10.1007/BF01171251[Crossref]
  • [17] S. Uchida, H. Aoki, J.Fluid.Mech. 82, 371 (1977) http://dx.doi.org/10.1017/S0022112077000718[Crossref]
  • [18] C.E. Dauenhauer, J. Majdalani, Phys. Fluids. 15, 1485 (2003) http://dx.doi.org/10.1063/1.1567719[Crossref]
  • [19] S. Asghar, M. Mushtaq, T. Hayat, Nonlinear Anal.-Real 11, 555 (2010) http://dx.doi.org/10.1016/j.nonrwa.2009.01.049[Crossref]
  • [20] S. Dinarvand, M.M. Rashidi, Nonlinear Anal.-Real 11, 1502 (2010) http://dx.doi.org/10.1016/j.nonrwa.2009.03.006[Crossref]
  • [21] H. Xu, Z.L. Lin, S.J. Liao, J.Z. Wu, J. Majdalani, Phys. Fluids 22, 053601 (2010) http://dx.doi.org/10.1063/1.3392770[Crossref]
  • [22] A. Nazir, T. Mahmood, Appl.Math.Model. 35, 3154 (2011) http://dx.doi.org/10.1016/j.apm.2010.12.015[Crossref]
  • [23] X.H. Si, L.C. Zheng, X.X. Zhang, X.Y. Si, Appl.Math.Model. 36, 1806 (2012) http://dx.doi.org/10.1016/j.apm.2011.09.010[Crossref]
  • [24] S.J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, (Chapman Hall/CRC Press, Boca Raton, 2003) http://dx.doi.org/10.1201/9780203491164[Crossref]
  • [25] S.J. Liao, Appl. Math. Comput. 147, 499 (2004) http://dx.doi.org/10.1016/S0096-3003(02)00790-7[Crossref]
  • [26] S. Abbasbandy, E. Shivanian, K. Vajravelu, Commun. Nonlinear Sci. Numer. Simulat. 16, 4268 (2011) http://dx.doi.org/10.1016/j.cnsns.2011.03.031[Crossref]
  • [27] N.F.M. Noor, I. Hashim, Int. J. Heat Mass Tran. 53, 2044 (2010) http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.12.052[Crossref]
  • [28] T. Hayat, S. Iram, T. Javed, S. Asghar, Commun. Nonlinear Sci. Numer. Simulat. 15, 2932 (2010) http://dx.doi.org/10.1016/j.cnsns.2009.11.030[Crossref]
  • [29] Z. Abbas, M. Sajid, T. Hayat, Theor. Comput. Fluid. Dyn. 20, 229 (2006) http://dx.doi.org/10.1007/s00162-006-0025-y[Crossref]
  • [30] M. Sajid, T. Hayat, S. Asghar, Phys. Lett. A. 355, 18 (2006) http://dx.doi.org/10.1016/j.physleta.2006.01.092[Crossref]
  • [31] D.A.S. Rees, I. Pop, IMA J. Appl. Math. 61, 179 (1998) http://dx.doi.org/10.1093/imamat/61.2.179[Crossref]
  • [32] G.S. Guram, A.C. Smith, Math. Appl. 6, 213 (1980)
  • [33] S.J. Liao, Commun. Nonlinear. Sci. 15, 2003 (2010) http://dx.doi.org/10.1016/j.cnsns.2009.09.002[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0246-9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.