Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 11 | 6 | 685-690

Article title

Thermoelasticity of thin shells based on the time-fractional heat conduction equation

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
The time-nonlocal generalizations of Fourier’s law are analyzed and the equations of the generalized thermoelasticity based on the time-fractional heat conduction equation with the Caputo fractional derivative of order 0 < α ≤ 2 are presented. The equations of thermoelasticity of thin shells are obtained under the assumption of linear dependence of temperature on the coordinate normal to the median surface of a shell. The conditions of Newton’s convective heat exchange between a shell and the environment have been assumed. In the particular case of classical heat conduction (α = 1) the obtained equations coincide with those known in the literature.

Publisher

Journal

Year

Volume

11

Issue

6

Pages

685-690

Physical description

Dates

published
1 - 6 - 2013
online
9 - 10 - 2013

References

  • [1] Y.S. Podstrigach, R.N. Shvets, Thermoelasticity of Thin Shells (Naukova Dumka, Kiev, 1978) (In Russian)
  • [2] Y.S. Podstrigach, Y.M. Kolyano, Generalized Thermomechanics (Naukova Dumka, Kiev, 1976) (In Russian)
  • [3] D.S. Chandrasekharaiah, Appl. Mech. Rev. 39, 355 (1986) http://dx.doi.org/10.1115/1.3143705[Crossref]
  • [4] D.D. Joseph, L. Preziosi, Rev. Modern Phys. 61, 41 (1989) http://dx.doi.org/10.1103/RevModPhys.61.41[Crossref]
  • [5] D.D. Joseph, L. Preziosi, Rev. Modern Phys. 62, 375 (1989) http://dx.doi.org/10.1103/RevModPhys.62.375[Crossref]
  • [6] D.S. Chandrasekharaiah, Appl. Mech. Rev. 51, 705 (1998) http://dx.doi.org/10.1115/1.3098984[Crossref]
  • [7] R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000) http://dx.doi.org/10.1016/S0370-1573(00)00070-3[Crossref]
  • [8] R. Metzler, J. Klafter, J. Phys. A: Math. Gen. 37, R161 (2004) http://dx.doi.org/10.1088/0305-4470/37/31/R01[Crossref]
  • [9] X.J. Yang, Advanced Local Fractional Calculus and Its Applications (World Science Publisher, New York, 2012)
  • [10] X.J. Yang, D. Baleanu, Thermal Sci., 2012, Doi: 10.2298/TSCI121124216Y [Crossref]
  • [11] M.S. Hu, D. Baleanu, X.J. Yang, Math. Probl. Eng. 2013, 358473 (2013)
  • [12] J. Hristov, Thermal Sci. 14, 291 (2010) http://dx.doi.org/10.2298/TSCI1002291H[Crossref]
  • [13] J. Hristov, European Phys. J. - Special Topics 193, 229 (2011) http://dx.doi.org/10.1140/epjst/e2011-01394-2[Crossref]
  • [14] R.R. Nigmatullin, Phys. Stat. Sol. (b) 123, 739 (1984) http://dx.doi.org/10.1002/pssb.2221230241[Crossref]
  • [15] A.E. Green, P.M. Naghdi, J. Elast. 31, 189 (1993) http://dx.doi.org/10.1007/BF00044969[Crossref]
  • [16] Y.Z. Povstenko, J. Thermal Stresses 28, 83 (2005) http://dx.doi.org/10.1080/014957390523741[Crossref]
  • [17] Y. Povstenko, Math. Meth. Phys.-Mech. Fields 51, 239 (2008)
  • [18] Y. Povstenko, J. Math. Sci. 162, 296 (2009) http://dx.doi.org/10.1007/s10958-009-9636-3[Crossref]
  • [19] Y. Povstenko, Phys. Scr. T 136, 014017 (2009) http://dx.doi.org/10.1088/0031-8949/2009/T136/014017[Crossref]
  • [20] Y. Povstenko, Fract. Calc. Appl. Anal. 14, 418 (2011)
  • [21] C. Cattaneo, Atti. Sem. Mat. Fis. Univ. Modena 3, 3 (1948)
  • [22] H.W. Lord, Y. Shulman, J. Mech. Phys. Solids 15, 299 (1967) http://dx.doi.org/10.1016/0022-5096(67)90024-5[Crossref]
  • [23] H.M. Youssef, J. Heat Transfer 132, 061301 (2010) http://dx.doi.org/10.1115/1.4000705[Crossref]
  • [24] H.H. Sherief, A.M.A. El-Sayed, A.M. Abd El-Latief, Int. J. Solids Struct. 47, 269 (2010) http://dx.doi.org/10.1016/j.ijsolstr.2009.09.034[Crossref]
  • [25] Y. Povstenko, J. Thermal Stresses 34, 97 (2011) http://dx.doi.org/10.1080/01495739.2010.511931[Crossref]
  • [26] Y. Povstenko, Comp. Math. Appl. 64, 3321 (2012) http://dx.doi.org/10.1016/j.camwa.2012.01.066[Crossref]
  • [27] M.E. Gurtin, A.C. Pipkin, Arch. Rational Mech. Anal. 31, 113 (1968) http://dx.doi.org/10.1007/BF00281373[Crossref]
  • [28] R.R. Nigmatullin, Phys. Stat. Sol. (b) 124, 389 (1984) http://dx.doi.org/10.1002/pssb.2221240142[Crossref]
  • [29] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications (Gordon and Breach, Amsterdam, 1993)
  • [30] R. Gorenflo, F. Mainardi, In: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics (Springer-Verlag, New York, 1997) 223
  • [31] I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)
  • [32] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)
  • [33] R.L. Magin, Fractional Calculus in Bioengineering (Begell House Publishers, Inc, Connecticut, 2006)
  • [34] Y. Povstenko, In: I. Petraš, I. Podlubny, K. Kostúr, J. Kačúr, A. Mojžišová (Eds.), 13th International Carpathian Control Conference (Podbanské, Slovak Republic, 2012)
  • [35] P. M. Naghdi, In: Handbuch der Physik, 6a/2 (Springer-Verlag, Berlin, 1972) 425
  • [36] A.L. Goldenweiser, Theory of Elastic Thin Shells (Nauka, Mocsow, 1976) (In Russian)
  • [37] I.N. Vekua, Some General Methods of Constructing Different Variants of Shell Theory (Nauka, Moscow, 1982) (In Russian)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-013-0244-y
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.