Preferences help
enabled [disable] Abstract
Number of results
2013 | 11 | 5 | 560-567
Article title

A novel method for non-destructive Compton scatter imaging based on the genetic algorithm

Title variants
Languages of publication
Compton scattering tomography is widely used in numerous applications such as biomedical imaging, nondestructive industrial testing and environmental survey, etc. This paper proposes the use of the genetic algorithm (GA), which utilizes bio-inspired mathematical models, to construct an image of the insides of a test object via the scattered photons, from a voxel within the object. A NaI(Tl) scintillation detector and a 185 MBq 137Cs gamma ray source were used in the experimental measurements. The obtained results show that the proposed GA based method performs well in constructing images of objects.
Physical description
1 - 5 - 2013
28 - 7 - 2013
  • Physics Faculty, University of Tabriz, P.O.Box 51666-16471, Tabriz, Iran
  • Physics Faculty, University of Tabriz, P.O.Box 51666-16471, Tabriz, Iran
  • Physics Faculty, University of Tabriz, P.O.Box 51666-16471, Tabriz, Iran
  • Physics Faculty, University of Tabriz, P.O.Box 51666-16471, Tabriz, Iran
  • [1] A. D. Sabharwal, B. S. Sandhu, B. Singh, Radiat. Meas., 44, 411 (2009)[Crossref]
  • [2] J. Wang, Y. Wang, Z. Chi, IEE Proc.-Sci. Meas. Technol., 146, 235 (1999)[Crossref]
  • [3] G. F. Knoll, Radiation Detection and Measurement, 4th edition, (John Wiley & Sons, 2010)
  • [4] G. N. Ramachandran, A. V. Lakshminarayanan, Proc. Nat. Acad., Sci. 68, 2236 (1971)[Crossref]
  • [5] H. Barrett, L. Parra, T. White, J. Optical Soc. Amer. A 14, 2914 (1997)[Crossref]
  • [6] L. Parra, H. H. Barrett, J. Nucl.Med., 37, 486 (1996)
  • [7] T. Tomitani, M. Hirasawa, Phys. Med. Biol., 47, 2129 (2002)[Crossref]
  • [8] S. M. Kim, J. S. Lee, S. J. Lee, IEEE Nucl. Sci. Symp. Conf. Rec., 4, 3070 (2007)
  • [9] J. Wang, O. M. Omidvar(Ed.), Progress in Neural Networks. (Ablex, Stamford 1994) 319
  • [10] P. Borne, D. Popescu, F. Gh. Filip, D. Stefanoiu, Optimization in Engineering Sciences, 11th edition (Wiley-ISTE, Croydon 2012)
  • [11] S. G. Prussin, Nuclear Physics for Application, (WILEY-VCHVerlag GmbH & Co. 2007)
  • [12] R. D. Evans, The Atomic nucleus, (McGraw-Hill, New-York, 1955)
  • [13] E. M. A. Hussein, Computed Radiation Imaging Physics and Mathematics of Forward and Inverse Problems, (Elsevier, Waltham 2011)
  • [14] J. Nocedal, Numerical Optimization, ( Springer-Verlag, New York 1999)[Crossref]
  • [15] D.E. Goldberg, Genetic Algorithms in Search Optimization and Machine Learning, (Addison-Wesley, Reading, MA, 1989)
  • [16] R. L. Haupt, S. E. Haupt, Practical Genetic Algorithms, 2edition (John Wiley and Sons, Hoboken 2004)
  • [17] S. N. Sivanandam, S. N. Deepa, Introduction to Genetic Algorithms (Springer-Verlag, Berlin Heidelberg 2008)
  • [18] F. Rothlauf, Representations for Genetic and Evolutionary Algorithms, (Springer-Verlag, Berlin Heidelberg 2006)
  • [19] H. Aytug, G. J. Koehler, ORSA J. Comput., 8, 183 (1996)[Crossref]
  • [20] C. Cheng, Z. Xu, C. Sui, Opt. Commun., 227, 371 (2003)[Crossref]
  • [21] A. B. Djurisic, Opt. Commun., 151, 147 (1998)[Crossref]
  • [22] M.B. Saddi, B.S. Sandhu, B. Singh, Ann. Nuc. Energy, 33, 271 (2006)[Crossref]
  • [23] G. T. Herman, Image reconstruction for projections, (Demic Press, New York, 1980) [PubMed]
  • [24] P. Campisi, K. O. Egiazarian, Blind Image Deconvolution: Theory and Applications, (CRC PressINC, 2007)[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.