PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 11 | 10 | 1423-1432
Article title

Existence of positive solutions for nonlocal boundary value problem of fractional differential equation

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper, we study a type of nonlinear fractional differential equations multi-point boundary value problem with fractional derivative in the boundary conditions. By using the upper and lower solutions method and fixed point theorems, some results for the existence of positive solutions for the boundary value problem are established. Some examples are also given to illustrate our results.
Publisher

Journal
Year
Volume
11
Issue
10
Pages
1423-1432
Physical description
Dates
published
1 - 10 - 2013
online
19 - 12 - 2013
Contributors
author
  • College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China, xipingliu@163.com
author
  • College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
author
  • College of Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
References
  • [1] R. Hilfer, Applications of Fractional Calculus in Physics, (World Scientific, Singapore, 2000) http://dx.doi.org/10.1142/9789812817747[Crossref]
  • [2] D. Baleanu, J. A. T. Machado, A. Luo, Eds., New Trends in Nanotechnology and Fractional Calculus Applications, (Springer, 2010) http://dx.doi.org/10.1007/978-90-481-3293-5[Crossref]
  • [3] T. J. Machado, V. Kiryakova, F. Mainardi, Commun. Nonlinear Sci. Numer. Simul. 16, 1140 (2011) http://dx.doi.org/10.1016/j.cnsns.2010.05.027[Crossref]
  • [4] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos, (World Scientific, 2012)
  • [5] I. Podlubny, Fractional Differential Equations, Mathematics in cience and Engineering, (New York: Academic Press, 1999)
  • [6] K. Diethelm, The Analysis of Fractional Differential Equation, (Spring-Verlag Heidelberg, 2010) http://dx.doi.org/10.1007/978-3-642-14574-2[Crossref]
  • [7] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, in: North-Holland Mathematics Studies, (Elsevier Science B. V. Amsterdam, 2006)
  • [8] A. K. Golmankhaneh, A. K. Golmankhaneh, D. Baleanu, Rom. Rep. Phys., 63, 609 (2011)
  • [9] O.P. Agrawal, D. Baleanu, J. Vib. Control, 13, 1269 (2007) http://dx.doi.org/10.1177/1077546307077467[Crossref]
  • [10] X. Su, Comput. Math. Appl., 64, 3425 (2012) http://dx.doi.org/10.1016/j.camwa.2012.02.043[Crossref]
  • [11] J. Wang, Y. Zhou, W. Wei, H. Xu, Comput. Math. Appl., 62, 1427 (2011) http://dx.doi.org/10.1016/j.camwa.2011.02.040[Crossref]
  • [12] G. Mophou, O. Nakoulima, G. N’Guerekata, Nonlinear Stud. 17, 15 (2010)
  • [13] L. Lin, X. Liu, H. Fang, Electron. J. Diff. Equ. 100, 1 (2012)
  • [14] M. Jia, X. Liu, Comput. Math. Appl. 62, 1405 (2011) http://dx.doi.org/10.1016/j.camwa.2011.03.026[Crossref]
  • [15] X. Liu, M. Jia, B. Wu, Electron. J. Qual. Theo. 69, 1 (2009)
  • [16] Z. Bai, H. Lü, J. Math. Anal. Appl. 311, 495 (2005) http://dx.doi.org/10.1016/j.jmaa.2005.02.052[Crossref]
  • [17] X. Liu, M. Jia, Comput. Math. Appl. 59, 2880 (2010) http://dx.doi.org/10.1016/j.camwa.2010.02.005[Crossref]
  • [18] D. Jiang, C. Yuan, Nonlinear Anal. 72, 710 (2009) http://dx.doi.org/10.1016/j.na.2009.07.012[Crossref]
  • [19] S. Liang, J. Zhang, Nonlinear Anal. 71, 5545 (2009) http://dx.doi.org/10.1016/j.na.2009.04.045[Crossref]
  • [20] E. R. Kaufmann, E. Mboumi, Electron. J. Qual. Theo. 3, 1(2008)
  • [21] X. Xu, D. Jiang, C. Yuan, Nonlinear Anal. 71, 4676 (2010) http://dx.doi.org/10.1016/j.na.2009.03.030[Crossref]
  • [22] Y. Zhao, S. Sun, Z. Han, Q. Li, Commun. Nonlinear Sci. Numer. Simul. 16, 2086 (2011) http://dx.doi.org/10.1016/j.cnsns.2010.08.017[Crossref]
  • [23] X. Zhao, C. Chai, W. Ge, Commun. Nonlinear Sci. Numer. Simul. 16, 3665 (2011) http://dx.doi.org/10.1016/j.cnsns.2011.01.002[Crossref]
  • [24] C. F. Li, X. N. Luo, Y. Zhou, Comput. Math. Appl. 59, 1363 (2010) http://dx.doi.org/10.1016/j.camwa.2009.06.029[Crossref]
  • [25] Z. Bai, Nonlinear Anal. 72, 916 (2010) http://dx.doi.org/10.1016/j.na.2009.07.033[Crossref]
  • [26] J. Wang, Y. Zhou, W. Wei, Commun. Nonlinear Sci. Numer. Simulat. 16, 4049 (2011) http://dx.doi.org/10.1016/j.cnsns.2011.02.003[Crossref]
  • [27] M. A. Krasnosel’skii, Positive Solutions of Operator Equations, (Noordhoff, Groningen, 1964)
  • [28] R. Leggett, L. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. J. 28, 673 (1979) http://dx.doi.org/10.1512/iumj.1979.28.28046[Crossref]
  • [29] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, (Academic Press, San Diego, 1988)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0238-9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.