Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 11 | 10 | 1366-1371

Article title

Analysis on the time and frequency domain for the RC electric circuit of fractional order

Content

Title variants

Languages of publication

EN

Abstracts

EN
This paper provides an analysis in the time and frequency domain of an RC electrical circuit described by a fractional differential equation of the order 0 < α≤ 1. We use the Laplace transform of the fractional derivative in the Caputo sense. In the time domain we emphasize on the delay, rise and settling times, while in the frequency domain the interest is in the cutoff frequency, the bandwidth and the asymptotes in low and high frequencies. All these quantities depend on the order of differential equation.

Publisher

Journal

Year

Volume

11

Issue

10

Pages

1366-1371

Physical description

Dates

published
1 - 10 - 2013
online
19 - 12 - 2013

Contributors

author
  • Departamento de Ingeniería Eléctrica. División de Ingenierías Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago, km. 3.5 + 1.8 km. Comunidad de Palo Blanco, 36885, Salamanca Guanajuato, México
  • Departamento de Ingeniería Eléctrica. División de Ingenierías Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago, km. 3.5 + 1.8 km. Comunidad de Palo Blanco, 36885, Salamanca Guanajuato, México
author
  • Departamento de Ingeniería Eléctrica. División de Ingenierías Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago, km. 3.5 + 1.8 km. Comunidad de Palo Blanco, 36885, Salamanca Guanajuato, México

References

  • [1] K.B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, New York, 1974)
  • [2] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications (PA: Gordon and Breach Science Publishers, Langhorne, 1993)
  • [3] I. Podlubny, Fractional Differential Equations (Academic Press, New York, 1999)
  • [4] D. Baleanu, Fractional Calculus Models and Numerical Methods (World Scientific Publishing Company, 2012)
  • [5] C.A. Monje, Y.Q. Chen, B.M. Vinagre, D. Xue, V. Feliu, Fractional-order Systems and Controls, Series: Advances in Industrial Control (Springer, 2010) http://dx.doi.org/10.1007/978-1-84996-335-0[Crossref]
  • [6] R. Caponetto, G. Dongola, L. Fortuna, I. Petrás, Fractional Order Systems: Modeling and Control Applications (World Scientific, Singapore, 2010)
  • [7] D. Baleanu, Z.B. Günvenc, J.A. Tenreiro Machado (Eds), New Trends in Nanotechnology and Fractional Calculus Applications (Springer, 2010)
  • [8] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos (World Scientific, 2012)
  • [9] D. Baleanu, K. Golmankhaneh Alireza, K. Golmankhaneh Ali, R.R. Nigmatullin, Nonlinear Dyn. 60, 1 (2010) http://dx.doi.org/10.1007/s11071-009-9575-z[Crossref]
  • [10] W. Wyss, J. Math. Phys. 27, 2782 (1986) http://dx.doi.org/10.1063/1.527251[Crossref]
  • [11] R. Hilfer, J. Phys. Chem B. 104, 3914 (2000) http://dx.doi.org/10.1021/jp9936289[Crossref]
  • [12] R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000) http://dx.doi.org/10.1016/S0370-1573(00)00070-3[Crossref]
  • [13] R. Metzler, J. Klafter, J. Phys. A Math. Gen. 37, 161 (2004) http://dx.doi.org/10.1088/0305-4470/37/31/R01[Crossref]
  • [14] O.P. Agrawal, J.A. Tenreiro-Machado, I. Sabatier (Eds.), Fractional Derivatives and Their Applications: Nonlinear Dynamics 38 (Springer-Verlag, Berlin, 2004)
  • [15] R. Hilfer. (Ed.), Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000)
  • [16] B.J. West, M. Bologna, P. Grigolini, Physics of Fractional Operators (Springer-Verlag, Berlin 2003) http://dx.doi.org/10.1007/978-0-387-21746-8[Crossref]
  • [17] R.L. Magin, Fractional calculus in Bioengineering (Roddin: Begell House Publisher, 2006)
  • [18] M. Caputo, F. Mainardi, Pure and App. Geo. 91, 134 (1971) http://dx.doi.org/10.1007/BF00879562[Crossref]
  • [19] S. Westerlund, Causality, Rep. No. 940426 (University of Kalmar, 1994)
  • [20] F. Riewe, Phys. Rev. E 53,1890 (1996)
  • [21] A.E. Herzallah Mohamed, I. Muslih Sami, D. Baleanu, M. Rabei Eqab, Nonlinear Dyn. 66, 4 (2011)
  • [22] K. Golmankhaneh Alireza, M. Yengejeh Ali, D. Baleanu, Int. J. Theor. Phys. 51, 9 (2012)
  • [23] K. Golmankhaneh Alireza, L. Lambert, Investigations in Dynamics: With Focus on Fractional Dynamics (Academic Publishing, 2012)
  • [24] I. Muslih Sami, M. Saddallah, D. Baleanu, E. Rabei, Romanian J. Phys. 55, 7 (2010)
  • [25] D. Baleanu, I. Muslih Sami, M. Rabei Eqab, Nonlinear Dyn. 53, 1 (2008) http://dx.doi.org/10.1007/s11071-007-9290-6[Crossref]
  • [26] V. Uchaikin, Fractional Derivatives for Physicists and Engineers (Springer, 2013) http://dx.doi.org/10.1007/978-3-642-33911-0[Crossref]
  • [27] B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco CA, 1982)
  • [28] K. Alireza, F. Golmankhaneh Vanideh, D. Baleanu, Romanian Rep. Phys. 65, 1 (2013)
  • [29] I. Petrás, I. Podlubny, P. O’Leary, L. Dorcák, B.M. Vinagre, Analoge Realization of Fractional-Order Controllers, (Tu BERG, Faculty, Kosice, Slovakia, 2002)
  • [30] I. Petrás, IEEE T. Circuits Syst.-II 57, 12 (2010)
  • [31] I. Petrás, Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation (Springer, London and HEP, Beijing, 2011) http://dx.doi.org/10.1007/978-3-642-18101-6[Crossref]
  • [32] A.A. Rousan, N.Y. Ayoub, F.Y. Alzoubi, H. Khateeb, M. Al-Qadi, M.K. Hasan (Quasser), B.A. Albiss, Fract. Calc. App. Anal. 9, 1 (2006)
  • [33] A. Obeidat, M. Gharibeh, M. Al-Ali, A. Rousan, Fract. Calc. App. Anal. 14, 2 (2011)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-013-0236-y
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.