PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 11 | 5 | 580-583
Article title

Laser scribing on HOPG for graphene stamp printing on silicon wafer

Content
Title variants
Languages of publication
EN
Abstracts
EN
Highly oriented pyrolytic graphite (HOPG) was scribed by pulsed laser beam to produce square patterns. Patterning of HOPG surface facilitates the detachment of graphene layers during contact printing. Direct HOPG-to-substrate and glue-assisted stamp printing of a few-layers graphene was compared. Printed graphene sheets were visualized by optical and scanning electron microscopy. The number of graphene layers was measured by atomic force microscopy. Glue-assisted stamp printing allows printing relatively large graphene sheets (40×40 μm) onto a silicon wafer. The presented method is easier to implement and is more flexible than the majority of existing ways of placing graphene sheets onto a substrate.
Publisher

Journal
Year
Volume
11
Issue
5
Pages
580-583
Physical description
Dates
published
1 - 5 - 2013
online
28 - 7 - 2013
Contributors
  • Institute of Solid State Physics, 8 Kengaraga St., LV-1063, Riga, Latvia, but@latnet.lv
  • Institute of Solid State Physics, 8 Kengaraga St., LV-1063, Riga, Latvia
  • Institute of Solid State Physics, 8 Kengaraga St., LV-1063, Riga, Latvia
  • Institute of Solid State Physics, 8 Kengaraga St., LV-1063, Riga, Latvia
author
  • Institute of Solid State Physics, 8 Kengaraga St., LV-1063, Riga, Latvia
References
  • [1] A. K. Geim, K. S. Novoselov, Nature Mater. 6, 183 (2007) http://dx.doi.org/10.1038/nmat1849[Crossref]
  • [2] A. K. Geim, Science 324, 1530 (2009) http://dx.doi.org/10.1126/science.1158877[Crossref]
  • [3] T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Science 313, 915 (2006) http://dx.doi.org/10.1126/science.1130681[Crossref]
  • [4] Y. Zhou, Q. L. Bao, L. Tang, Y. Zhong, K. P. Loh, Chem. Mater. 21, 2950 (2009) http://dx.doi.org/10.1021/cm9006603[Crossref]
  • [5] S. Park, R. S. Ruoff, Nat. Nanotechnol. 4, 217 (2009) http://dx.doi.org/10.1038/nnano.2009.58[Crossref]
  • [6] Y. Zhou, K. P. Loh, Adv. Mater. 22, 3615 (2010) http://dx.doi.org/10.1002/adma.201000436[Crossref]
  • [7] X. Liang, Z. Fu, S. Y. Chou, Nano Lett. 7, 3840 (2007) http://dx.doi.org/10.1021/nl072566s[Crossref]
  • [8] Y. Zhou et al., Adv. Mater. 22, 67 (2010) http://dx.doi.org/10.1002/adma.200901942[Crossref]
  • [9] G. Kalita, L. Qi, Y. Namba, K. Wakita, M. Umeno, Mater. Lett. 65, 1569 (2011) http://dx.doi.org/10.1016/j.matlet.2011.02.057[Crossref]
  • [10] N. Kurra, A. A. Sagade, G. U. Kulkarni, Adv. Funct. Mater. 21, 3836 (2011) http://dx.doi.org/10.1002/adfm.201100832[Crossref]
  • [11] G. H. Han et al, ACS Nano, 5–1, 263 (2011) http://dx.doi.org/10.1021/nn1026438[Crossref]
  • [12] L. Lancellotti et al, Thin Solid Films, 522, 390 (2012) http://dx.doi.org/10.1016/j.tsf.2012.09.040[Crossref]
  • [13] J. K. Wassei, R. B. Kaner, Mater. Today, 13-3, 52 (2010) http://dx.doi.org/10.1016/S1369-7021(10)70034-1[Crossref]
  • [14] P. Blake et al, Appl. Phys. Lett. 91, 063124 (2007) http://dx.doi.org/10.1063/1.2768624[Crossref]
  • [15] D. Teweldebrhan, A. A. Balandin, Appl. Phys. Lett. 94, 013101 (2009) http://dx.doi.org/10.1063/1.3062851[Crossref]
  • [16] M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, E. D. Williams, Nano Lett. 7–6, 1643 (2007) http://dx.doi.org/10.1021/nl070613a[Crossref]
  • [17] J.-J. Yu, Sh. Wu, Agilent Technologies, Application Note (2012)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0235-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.