PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 11 | 9 | 1082-1090
Article title

A rate equation method for the sequential double ionisation, including autoionising state excitation, of a noble gas

Content
Title variants
Languages of publication
EN
Abstracts
EN
A set of rate equations have been tested against a more robust set of Time-Dependent Density Matrix (TDDM) equations [D. P. W. Middleton, L. A. A. Nikolopoulos, J. Mod. Opti. 59, 1650 (2012)] by using them to determine the populations of ion species and autoionising states (AIS) in noble gas atoms when interacting with a strong external field. Two field shapes were tested here - sinusoidal and square - and a variety of pulse characteristics were examined, i.e. intensity, duration and photon energy, for the neon atomic system. It was found that the rate equations were sufficiently accurate only when the external field is way off-resonant with the AIS. Moreover, analytical solutions of the rate equations in the square pulse case agree with the numerical solutions for a time-dependent pulse containing many cycles. An attempt to model a stochastic field was also made and it was found that the use of such a field diminished and broadened the ion yield ratio due to the presence of an added bandwidth.
Publisher

Journal
Year
Volume
11
Issue
9
Pages
1082-1090
Physical description
Dates
published
1 - 9 - 2013
online
24 - 11 - 2013
References
  • [1] W. Ackermann et al., Nat. Photonics 1, 336 (2007) http://dx.doi.org/10.1038/nphoton.2007.76[Crossref]
  • [2] V. Richardson et al., J. Phys. B: At. Mol. Phys. 45, 085601 (2012) http://dx.doi.org/10.1088/0953-4075/45/8/085601[Crossref]
  • [3] L. Young et al., Nature (London) 466, 56 (2010) http://dx.doi.org/10.1038/nature09177[Crossref]
  • [4] L. A. A. Nikolopoulos, P. Lambropoulos, J. Phys. B: At. Mol. Phys. 40, 1347 (2007) http://dx.doi.org/10.1088/0953-4075/40/7/004[Crossref]
  • [5] M. Meyer et al., Phys. Rev. A 74, 011401 (2006) http://dx.doi.org/10.1103/PhysRevA.74.011401[Crossref]
  • [6] D. P. W. Middleton, L. A. A. Nikolopoulos, J. Mod. Opti. 59, 1650 (2012) http://dx.doi.org/10.1080/09500340.2012.737481[Crossref]
  • [7] L. A. A. Nikolopoulos, T. J. Kelly, J. T. Costello, Phys. Rev. A 84, 063419 (2011) http://dx.doi.org/10.1103/PhysRevA.84.063419[Crossref]
  • [8] B.-N. Dai, P. Lambropoulos, Phys. Rev. A 34, 3954 (1986) http://dx.doi.org/10.1103/PhysRevA.34.3954[Crossref]
  • [9] P. Lambropoulos, P. Zoller, Phys. Rev. A 24, 379 (1981) http://dx.doi.org/10.1103/PhysRevA.24.379[Crossref]
  • [10] K. Blum, Density matrix theory and its applications (Plenum Press, 1981) http://dx.doi.org/10.1007/978-1-4615-6808-7[Crossref]
  • [11] M. Martins, M. Wellhöfer, A. A. Sorokin, M. Richter, K. Tiedtke, W. Wurth, Phys. Rev. A 80, 023411 (2009) http://dx.doi.org/10.1103/PhysRevA.80.023411[Crossref]
  • [12] U. Fano, Phys. Rev. 124, 1866 (1961) http://dx.doi.org/10.1103/PhysRev.124.1866[Crossref]
  • [13] S. Stenholm, Foundations of Laser Spectroscopy (John Wiley and Sons, 1984)
  • [14] R. Bellman, R. S. Roth, Laplace Transforms (Singapore, World Scientific, 1984) http://dx.doi.org/10.1142/0107[Crossref]
  • [15] P. Agostini, A. T. Georges, S. E. Wheatley, P. Lambropoulos, M. D. Levenson, J. Phys. B: At. Mol. Phys. 11, 1733 (1978) http://dx.doi.org/10.1088/0022-3700/11/10/011[Crossref]
  • [16] A. M. Covington et al., Phys. Rev. A 66, 062710 (2002) http://dx.doi.org/10.1103/PhysRevA.66.062710[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0232-2
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.