PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 11 | 6 | 740-749
Article title

Time-fractional extensions of the Liouville and Zwanzig equations

Content
Title variants
Languages of publication
EN
Abstracts
EN
This paper presents extensions to the classical stochastic Liouville equation of motion that contain the Riemann-Liouville and Caputo time-fractional derivatives. At first, the dynamic equations with the time-fractional derivatives are formally obtained from the classical Liouville equation. A feature of these new equations is that they have the same common formal solution as the classical Liouville equation and therefore may be used for study of the Hamiltonian system dynamics. Two cases of the time-dependent and time-independent Hamiltonian are considered separately. Then, the time-fractional Liouville equations are deduced from the short- and long-time asymptotic expansions of the obtained dynamic equations. The physical meaning of the resulting equations is discussed. The statements of the Cauchy-type problems for the derived time-fractional Liouville equations are given, and the formal solutions of these problems are presented. At last, the projection operator formalism is employed to derive the time-fractional extensions of the Zwanzig kinetic equations and the corresponding formal statistical operators from the time-fractional Liouville equations.
Publisher
Journal
Year
Volume
11
Issue
6
Pages
740-749
Physical description
Dates
published
1 - 6 - 2013
online
9 - 10 - 2013
References
  • [1] R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000) http://dx.doi.org/10.1016/S0370-1573(00)00070-3[Crossref]
  • [2] G.M. Zaslavsky, Phys. Rep. 371, 461 (2002) http://dx.doi.org/10.1016/S0370-1573(02)00331-9[Crossref]
  • [3] R. Klages, G. Radons, I.M. Sokolov (Eds), Anomalous Transport: Foundations and Applications (Willey-VCH, Berlin, 2008) http://dx.doi.org/10.1002/9783527622979[Crossref]
  • [4] J. Klafter, S.C. Lim, R. Metzler (eds), Fractional Dynamics: Recent Advances (World Scientific, Singapore, 2011)
  • [5] V. Uchaikin, R. Sibatov, Fractional Kinetics in Solids: Anomalous Charge Transport in Semiconductors, Dielectrics and Nanosystems (World Scientific, Singapore, 2013) http://dx.doi.org/10.1142/8185[Crossref]
  • [6] S. Samko, A. Kilbas, O. Marichev, Fractional Integrals and derivatives: Theory and Applications (Gordon and Breach, New York, 1993)
  • [7] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations (Elsevier, Amsterdam, 2006)
  • [8] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus: Models and Numerical Methods (Series on Complexity, Nonlinearity and Chaos, World Scientific, Singapore, 2012)
  • [9] V. Uchaikin, Fractional Derivatives for Physicists and Engineers (Springer-Higher Education Press, 2013) http://dx.doi.org/10.1007/978-3-642-33911-0[Crossref]
  • [10] R. Metzler, W.G. Glockle, T.F. Nonnemacher, Physica A 211, 13 (1994) http://dx.doi.org/10.1016/0378-4371(94)90064-7[Crossref]
  • [11] A.V. Chechkin, R. Gorenflo, I.M. Sokolov, Phys. Rev. E 66, 046129 (2002) http://dx.doi.org/10.1103/PhysRevE.66.046129[Crossref]
  • [12] E. Abad, S.B. Yuste, K. Lindenberg, Phys. Rev. E 81, 031115 (2010) http://dx.doi.org/10.1103/PhysRevE.81.031115[Crossref]
  • [13] F. Mainardi, Radiophys. Quantum El. 38, 13 (1995) http://dx.doi.org/10.1007/BF01051854[Crossref]
  • [14] F. Mainardi, Chaos Soliton. Fract. 7, 1461 (1996) http://dx.doi.org/10.1016/0960-0779(95)00125-5[Crossref]
  • [15] T. M. Atanackovic, S. Pilipovic, D. Zorica, J. Phys. A - Math. Theory 40, 5319 (2007) http://dx.doi.org/10.1088/1751-8113/40/20/006[Crossref]
  • [16] A.N. Bogolyubov, A.A. Potapov, S.S. Rehviashvili, Mosc. Univ. Phys. Bull+ 64, 365 (2009) http://dx.doi.org/10.3103/S0027134909040031[Crossref]
  • [17] Yu. Luchko, F. Mainardi, Yu. Povstenko, Comput. Math. Appl. (in press), DOI:10.1016/j.camwa.2013.01.005 [Crossref]
  • [18] R. Metzler, E. Barkai, J. Klafter, Phys. Rev. Lett. 82, 3563 (1999) http://dx.doi.org/10.1103/PhysRevLett.82.3563[Crossref]
  • [19] E. Barkai, Phys. Rev. E 63, 046118 (2001) http://dx.doi.org/10.1103/PhysRevE.63.046118[Crossref]
  • [20] A. Chechkin, J. Klafter, I. Sokolov, Europhys. Lett. 63, 326 (2003) http://dx.doi.org/10.1209/epl/i2003-00539-0[Crossref]
  • [21] D.A. Benson, S.W. Wheatcraft, M.M. Meerschaert, Water Resour. Res. 36, 1403 (2000) http://dx.doi.org/10.1029/2000WR900031[Crossref]
  • [22] R. Schumer, D.A. Benson, M.M. Meerschaert, B. Baeumer, Water Resour. Res. 39, 1022 (2003)
  • [23] Y. Zhang, D.A. Benson, D.M. Reeves, Adv. Water Resour. 32, 561 (2009) http://dx.doi.org/10.1016/j.advwatres.2009.01.008[Crossref]
  • [24] S. Bhalekar, V. Daftardar-Gejji, D. Baleanu, R. Magin, Comput. Math. Appl. 61, 1355 (2011) http://dx.doi.org/10.1016/j.camwa.2010.12.079[Crossref]
  • [25] S. Bhalekar, V. Daftardar-Gejji, D. Baleanu, R. Magin, Comput. Math. Appl. 64, 3367 (2012) http://dx.doi.org/10.1016/j.camwa.2012.01.069[Crossref]
  • [26] M. Naber, J. Math. Phys. 45, 3339 (2004) http://dx.doi.org/10.1063/1.1769611[Crossref]
  • [27] S.I. Muslih, O.P. Agrawal, D. Baleanu, Int. J. Theor. Phys. 49, 1746 (2010) http://dx.doi.org/10.1007/s10773-010-0354-x[Crossref]
  • [28] E.W. Montroll, G.H. Weiss, J. Math. Phys. 6, 167 (1965) http://dx.doi.org/10.1063/1.1704269[Crossref]
  • [29] B. Berkowitz, A. Cortis, M. Dentz, H. Scher, Rev. Geophys. 44, 49 (2006) http://dx.doi.org/10.1029/2005RG000178[Crossref]
  • [30] R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II. Nonequilibrium statistical mechanics (Springer-Verlag, Berlin, 1985) http://dx.doi.org/10.1007/978-3-642-96701-6[Crossref]
  • [31] R.L. Liboff, Kinetic Theory: Classical, Quantum, and Relativistic Descriptions (Springer-Verlag, New York, 2003)
  • [32] V.E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media (Springer, Heidelberg, 2011)
  • [33] F. Riewe, Phys. Rev. E 55, 358 (1997) http://dx.doi.org/10.1103/PhysRevE.55.3581[Crossref]
  • [34] M. Klimek, Czech. J. Phys. 52, 1247 (2002) http://dx.doi.org/10.1023/A:1021389004982[Crossref]
  • [35] D. Baleanu, S.I. Muslih, Phys. Scripta 72, 119 (2005) http://dx.doi.org/10.1238/Physica.Regular.072a00119[Crossref]
  • [36] E.M. Rabei, K.I. Nawafleh, R.S. Hijjawi, S.I. Muslih, D. Baleanu, J. Math. Anal. Appl. 327, 891 (2007) http://dx.doi.org/10.1016/j.jmaa.2006.04.076[Crossref]
  • [37] O.P. Agrawal, S.I. Muslih, D. Baleanu, Commun. Nonlinear Sci. 16, 4756 (2011) http://dx.doi.org/10.1016/j.cnsns.2011.05.002[Crossref]
  • [38] R. Hilfer, Phys. Rev. E 48, 2466 (1993) http://dx.doi.org/10.1103/PhysRevE.48.2466[Crossref]
  • [39] Y. Feldman, A. Puzenko, Y. Ryabov, In: W.T. Coffey (Ed.), Y.P. Kalmykov (Ed.), Fractals, diffusion, and relaxation in disordered complex systems, Chap. 1 (John Wiley & Sons, 2006) 1
  • [40] R. Hilfer, Chaos Soliton. Fract. 5, 1475 (1995) http://dx.doi.org/10.1016/0960-0779(95)00027-2[Crossref]
  • [41] V.E. Tarasov, Chaos 14, 123 (2004) http://dx.doi.org/10.1063/1.1633491[Crossref]
  • [42] V.E. Tarasov, J. Phys. Conf. Ser. 7, 17 (2005) http://dx.doi.org/10.1088/1742-6596/7/1/002[Crossref]
  • [43] V.E. Tarasov, Mod. Phys. Lett. B 21, 237 (2007) http://dx.doi.org/10.1142/S0217984907012700[Crossref]
  • [44] V.E. Tarasov, Int. J. Mod. Phys. B 20, 341 (2006) http://dx.doi.org/10.1142/S0217979206033267[Crossref]
  • [45] V.E. Tarasov, Int. J. Mod. Phys. B 21, 955 (2007) http://dx.doi.org/10.1142/S0217979207036771[Crossref]
  • [46] A. Erdélyi, W. Magnus, F. Oberhettinger, F. Tricomi, Higher Transcendental Functions, vol. 3 (McGraw-Hill, New York, 1955)
  • [47] N.N. Bogoliubov, D.V. Shirkov, Introduction to the theory of quantized fields (John Willey & Sons, New York, 1980)
  • [48] M.M. Dzhrbashyan, Integral transforms and representations of functions in the complex domain (Nauka, Moscow, 1966) (in Russian)
  • [49] R. Wong, Y.-Q. Zhao, Constr. Approx. 18, 355 (2002) http://dx.doi.org/10.1007/s00365-001-0019-3[Crossref]
  • [50] K. Yosida, Functional analysis (Springer-Verlag, Berlin, 1980) http://dx.doi.org/10.1007/978-3-642-61859-8[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0229-x
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.