Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 11 | 10 | 1387-1391

Article title

Two methods to solve a fractional single phase moving boundary problem

Content

Title variants

Languages of publication

EN

Abstracts

EN
A moving boundary problem of a melting problem is considered in this study. A mathematical model using the Caputo fractional derivative heat equation is proposed in the paper. Since moving boundary problems are difficult to solve for the exact solution, two methods are presented to approximate the evolution of the temperature. To simplify the computation, a similarity variable is adopted in order to reduce the partial differential equations to ordinary ones.

Publisher

Journal

Year

Volume

11

Issue

10

Pages

1387-1391

Physical description

Dates

published
1 - 10 - 2013
online
19 - 12 - 2013

Contributors

author
  • School of Mathematical Sciences, University of Jinan, 106 Jiwei Road, 250100, Jinan, P.R. China
author
  • Department of Engineering Mechanics, School of Civil Engineering, Shandong University, 17923 Jingshi Road, 250061, Jinan, P.R. China
author
  • Department of Engineering Mechanics, School of Civil Engineering, Shandong University, 17923 Jingshi Road, 250061, Jinan, P.R. China

References

  • [1] R. Gorenflo, F. Mainardi, A. Vivoli, Chaos Soliton. Fract. 87, 34 (2007)
  • [2] A. A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, 2006)
  • [3] G. M. Zaslavsky, Phys. Rep. 431, 371 (2002)
  • [4] A. Nnanna, A. Haji-Sheikh, K.T. Harris, J. Porous Media 31, 8 (2005)
  • [5] Y. Povestenko, Mech. Res. Commun. 436, 37 (2010)
  • [6] B. Li, J. Wang, Phys. Rev. Lett. 044301, 91 (2003) [PubMed]
  • [7] R. Metzler, I.M. Sokolov, Phys. Rev. Lett. 089401, 92 (2004) [PubMed]
  • [8] B. Li, J. Wang, Phys. Rev. Lett. 089402, 92 (2004) http://dx.doi.org/10.1016/j.physletb.2004.07.062[Crossref]
  • [9] X. Y. Jiang, M.Y. Xu, Physica A 3368, 389 (2010)
  • [10] H. R. Ghazizadeh, A. Azimi, M. Maerefat, Int. J. Heat Mass Tran. 2095, 55 (2012)
  • [11] H. Xu, H.T. Qi, X.Y. Jiang, Chinese Phys. B 014401, 22 (2013)
  • [12] J. Y. Liu, M.Y. Xu, J. Math. Anal. Appl. 536, 351 (2009)
  • [13] V. R. Voller, Int. J. Heat Mass Tran., 5622, 53 (2010)
  • [14] G. C. Wu, Int. Rev. Chem. Eng. 505, 4 (2012)
  • [15] G. C. Wu, Chinese Phys. B 120504, 21 (2012)
  • [16] H. Jafari, S.A. Yousefi, M.A. Firoozjae, Commun. Frac. Calc. 9, 2(1) (2011)
  • [17] J. L. Vazquez, Nonlinear Part. D. E. 271, 7 (2012)
  • [18] J. Histov, Thermal Sci. 291, 14 (2010)
  • [19] J. Crank, Free and Moving boundary problems (Clarendon Press, 1984).
  • [20] J. Singh, P. Gupta, K. Rai, Appl. Math. Model. 1937, 35 (2011)
  • [21] Y. Luchko, R. Gorenflo, Fract. Calc. Appl. Anal. 63, 1 (1998)
  • [22] X. C. Li, M.Y. Xu, S.W. Wang, J. Phys. A: Math. Theor. 155202, 41 (2008)
  • [23] V. D. Djordjevica, T.M. Atanackovicb, J. Comput. Appl. Math. 701, 222 (2008)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-013-0227-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.