PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 11 | 10 | 1387-1391
Article title

Two methods to solve a fractional single phase moving boundary problem

Content
Title variants
Languages of publication
EN
Abstracts
EN
A moving boundary problem of a melting problem is considered in this study. A mathematical model using the Caputo fractional derivative heat equation is proposed in the paper. Since moving boundary problems are difficult to solve for the exact solution, two methods are presented to approximate the evolution of the temperature. To simplify the computation, a similarity variable is adopted in order to reduce the partial differential equations to ordinary ones.
Publisher

Journal
Year
Volume
11
Issue
10
Pages
1387-1391
Physical description
Dates
published
1 - 10 - 2013
online
19 - 12 - 2013
Contributors
author
  • School of Mathematical Sciences, University of Jinan, 106 Jiwei Road, 250100, Jinan, P.R. China, xichengli@yahoo.com.cn
author
  • Department of Engineering Mechanics, School of Civil Engineering, Shandong University, 17923 Jingshi Road, 250061, Jinan, P.R. China
author
  • Department of Engineering Mechanics, School of Civil Engineering, Shandong University, 17923 Jingshi Road, 250061, Jinan, P.R. China
References
  • [1] R. Gorenflo, F. Mainardi, A. Vivoli, Chaos Soliton. Fract. 87, 34 (2007)
  • [2] A. A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, 2006)
  • [3] G. M. Zaslavsky, Phys. Rep. 431, 371 (2002)
  • [4] A. Nnanna, A. Haji-Sheikh, K.T. Harris, J. Porous Media 31, 8 (2005)
  • [5] Y. Povestenko, Mech. Res. Commun. 436, 37 (2010)
  • [6] B. Li, J. Wang, Phys. Rev. Lett. 044301, 91 (2003) [PubMed]
  • [7] R. Metzler, I.M. Sokolov, Phys. Rev. Lett. 089401, 92 (2004) [PubMed]
  • [8] B. Li, J. Wang, Phys. Rev. Lett. 089402, 92 (2004) http://dx.doi.org/10.1016/j.physletb.2004.07.062[Crossref]
  • [9] X. Y. Jiang, M.Y. Xu, Physica A 3368, 389 (2010)
  • [10] H. R. Ghazizadeh, A. Azimi, M. Maerefat, Int. J. Heat Mass Tran. 2095, 55 (2012)
  • [11] H. Xu, H.T. Qi, X.Y. Jiang, Chinese Phys. B 014401, 22 (2013)
  • [12] J. Y. Liu, M.Y. Xu, J. Math. Anal. Appl. 536, 351 (2009)
  • [13] V. R. Voller, Int. J. Heat Mass Tran., 5622, 53 (2010)
  • [14] G. C. Wu, Int. Rev. Chem. Eng. 505, 4 (2012)
  • [15] G. C. Wu, Chinese Phys. B 120504, 21 (2012)
  • [16] H. Jafari, S.A. Yousefi, M.A. Firoozjae, Commun. Frac. Calc. 9, 2(1) (2011)
  • [17] J. L. Vazquez, Nonlinear Part. D. E. 271, 7 (2012)
  • [18] J. Histov, Thermal Sci. 291, 14 (2010)
  • [19] J. Crank, Free and Moving boundary problems (Clarendon Press, 1984).
  • [20] J. Singh, P. Gupta, K. Rai, Appl. Math. Model. 1937, 35 (2011)
  • [21] Y. Luchko, R. Gorenflo, Fract. Calc. Appl. Anal. 63, 1 (1998)
  • [22] X. C. Li, M.Y. Xu, S.W. Wang, J. Phys. A: Math. Theor. 155202, 41 (2008)
  • [23] V. D. Djordjevica, T.M. Atanackovicb, J. Comput. Appl. Math. 701, 222 (2008)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0227-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.