Preferences help
enabled [disable] Abstract
Number of results
2013 | 11 | 6 | 702-713
Article title

Tuning fractional PID controllers for a Steward platform based on frequency domain and artificial intelligence methods

Title variants
Languages of publication
In this paper, two methods to tune a fractional-order PI
μ controller for a mechatronic system are presented. The first method is based on a genetic algorithm to obtain the parameter values for the fractionalorder PI
μ controller by global optimization. The second method used to design the fractional-order PI
μ controller relies on an auto-tuning approach by meeting some specifications in the frequency domain. The real-time experiments are conducted using a Steward platform which consists of a table tilted by six servo-motors with a ball on the top of the table. The considered system is a 6 degrees of freedom (d.o.f.) motion platform. The feedback on the position of the ball is obtained from images acquired by a visual sensor mounted above the platform. The fractional-order controllers were implemented and the performances of the steward platform are analyzed.
Physical description
1 - 6 - 2013
9 - 10 - 2013
  • [1] R. H. Bishop, The Mechatronics Handbook (CRC Press, USA, 2002)
  • [2] M. Steinbuch, R. J. E. Merry, M. L. G. Boerlage, M. J. C. Ronde, M. J. G. van de Molengraft, In: W. S. Levin (Ed.), Advanced Motion Control Design, Second edition (CRC Press, USA, 2010) 27–1/25
  • [3] M. Steinbuch, G. Schootstra, O. H. Bosgra, In: W. S. Levine (Ed.), Robust control of a compact disc mechanism (CRC Express, London, 2000) 231–237
  • [4] K. J. Astrom, T. Hagglund, Advanced PID control (ISA-The Instrumentation, Systems, and Automation Society, Research Triangle Park, USA, 2006)
  • [5] B. Stuart, A history of control engineering: 1930–1955 (Peter Peregrinus Ltd., London, 1993)
  • [6] A. Oustaloup, La Derivation Non Entiere: Theorie, Synthese et Applications (Hermes, Paris, 1995)
  • [7] I. Podlubny, Fraction order systems and PI −λD μ controllers, IEEE T. Automat. Contr. 44, 208 (1999)[Crossref]
  • [8] B. M. Vinagre, C. A. Monje, A. J. Calderon, J. I. Suarez, J. Vib. Control 13, 1419 (2007)[Crossref]
  • [9] D. Baleanu, J. A. T. Machado, A. Luo, Fractional Dynamics and Control (Springer, New York, USA, 2012)[Crossref]
  • [10] R. L. Bagley, R. A. Calico, Fractional-order state equations for the control of viscoelastic damped structures, J. Guid. Control Dynam. 14, 304 (1991)[Crossref]
  • [11] N. M. F. Ferreira, J. A. T. Machado, Fractional-order hybrid control of robotic manipulators (Proceedings of the 11th International Conference on Advanced Robotics, Coimbra, Portugal, 2003) 393
  • [12] A. Kailil, N. Mrani, M. M. Touati, S. Choukri, N. Elalami, Low earth-orbit satellite attitude stabilization with fractional regulators, Int. J. Syst. Sci. 35, 559 (2004)[Crossref]
  • [13] H. Delavari, D. M. Senejohnny, D. Baleanu, Sliding observer for synchronization of fractional order chaotic systems with mismatched parameter, Cent. Eur. J. Phys. 10, 1095 (2012)[Crossref]
  • [14] A. Babakhani, D. Baleanu, R. Khanbabaie, Hopf bifurcation for a class of fractional differential equations with delay, Nonlinear Dynam. 69, 721 (2012)[Crossref]
  • [15] A. K. Golmankhaneh, Investigations in Dynamics: With Focus on Fractional Dynamics (Lap Lambert, Academic Publishing, Germany, 2012)
  • [16] H. Jafari, A. Kadem, D. Baleanu, T. Yilmaz, Solutions of the fractional Davey-Stewartson equations with variational iteration method, Rom. Rep. Phys. 64, 337 (2012)
  • [17] F. Padula, A. Visioli, J. Process Contr. 21, 69 (2011)[Crossref]
  • [18] M. Silva, T. Machado, J. Vib. Control. 12, 1483 (2006)[Crossref]
  • [19] J. Villagra, B. Vinagre, I. Tejado, Data-driven fractional PID control: application to DC motors in flexible joints (In IFAC Conference on Advanced in PID Control, 2012)
  • [20] M. R. Faieghi, H. Delavari, D. Baleanu, Control of an uncertain fractional-order Liu system via fuzzy fractional-order sliding mode control, J. Vib. Control 18, 1366 (2012)[Crossref]
  • [21] H. Fan, Y. Sun, X. Zhang, Research on fractional order controller in servo press control system (Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, Harbin, China, 2007) 934–938
  • [22] C. Ma, Y. Hori, Fractional order control and its application of controller for robust two-inertia speed control (Proceedings of the 4th International Power electronics and Motion Control Conference, vol. 3, Xian, China, 2004) 1477–1482.
  • [23] N. L. S. Hashim et al., Procedia Engineering 41, 805 (2012)[Crossref]
  • [24] C. M. Ionescu, J. T. Machado, R. De Keyser, Computer and Mathematics with Applications 62, 845 (2011)[Crossref]
  • [25] Y. Kobayashi, T. Watanabe, T. Ando, M. Seki, M.G. Fujie, Fractional impedance control for reproducing the material properties of muscle and its application in a body weight support system (3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, 2010) 553–559[Crossref]
  • [26] D. Steward, A platform with six degrees of freedom (Proceedings of the Institution of Mechanical Engineering, vol. 180(1), June, 1965) 371–386
  • [27] W. Rekdalsbakken, The use of artificial intelligence in controlling a 6 DOF motion platform (Proceedings of 21st European Conference on Modeling and Simulation, Prague, Czech Republic, 2007) 471–476
  • [28] L. Ljung, System identification: theory for the user (Prentice-Hall, USA, 2007)
  • [29] J. Kennedy, R. C. Eberhart, Y. Shi, Swarm Intelligence (Morgan Kaufmann, USA, 2001)
  • [30] R. C. Eberhart, J. Kennedy, A new optimizer using particle swarm theory (Proceedings of the 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4th–6th October, 1995) 39–43
  • [31] L. Y. Chang, H. C. Chen, Tuning of fractional PID controllers using adaptive genetic algorithm for active magnetic bearing system, WSEAS Transactions on System 8, 226 (2009)
  • [32] P. Rai, V. Shekher, O. Prakash, Determination of stabilizing parameter of fractional order PID controller using genetic algorithm, International Journal of Computational Engineering and Management 15, 24 (2012)
  • [33] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. (Addison-Wesley Publishing Company, Inc., Reading, MA, 1989)
  • [34] M. Gen, R. W. Cheng, L. Lin, Network Models and Optimization: Multiobjecive Genetic Algorithm Approach (Springer, London, 2008)
  • [35] H. Unbehauen, Controller design in time-domain, Control Systems, Robotics and Automation (EOLSS, Oxford, 2009)
  • [36] C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue, V. Feliu, Fraction-order System and Controls: Fundamentals and Applications (Springer, London, 2010)[Crossref]
  • [37] D. Y. Xue, C. N. Zhao, Y. Q. Chen, A modified approximation method of fractional order system (Proceedings of IEEE Conference on Mechatronics and Automationm, Luoyang, China, 2006) 1043–1048
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.