As of 1 April 2026, the PSJD database will become an archive and will no longer accept new data. Current publications from Polish scientific journals are available through the Library of Science: https://bibliotekanauki.pl
In the paper possible approximation of solutions to initial value problems stated for fractional nonlinear equations with sequential derivatives of Caputo type is presented. We proved that values of Caputo derivatives in continuous case can be approximated by corresponding values of h-difference operators with h being small enough. Numerical examples are presented.
Bialystok University of Technology, ul. Wiejska 45a, 15-351, Białystok, Poland
References
[1] J. A. T. Machado, Syst. Anal. Model. Sim. 27, 107 (1997)
[2] D. Baleanu, H. Mohammadi, Sh. Rezapour, Abstr. Appl. Anal. 2012, 837437 (2012)
[3] A. Debbouche, D. Baleanu, R. P. Agarwal, Bound. Value Prob. 2012, 78 (2012) http://dx.doi.org/10.1186/1687-2770-2012-78[Crossref]
[4] G. Wang, D. Baleanu, L. Zhang, Fractional Calculus & Applied Analysis 15, 244 (2012) http://dx.doi.org/10.2478/s13540-012-0018-z[Crossref]
[5] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equation (John Wiley & Sons, 1993)
[6] I. Podlubny, Fractional Differential Equations (Academic Press, New York, NY, 1999)
[7] A. D. Polyanin, V. F. Zaitsev, Handbook of Nonlinear Partial Differential Equations (Chapman & Hall, CRC, Boca Raton, 2004)
[8] B. Ahmad, J. J. Nieto, Comput. Math. Appl. 64, 3046 (2012) http://dx.doi.org/10.1016/j.camwa.2012.02.036[Crossref]
[9] C. Bai, J. Math. Anal. Appl. 384, 211 (2011) http://dx.doi.org/10.1016/j.jmaa.2011.05.082[Crossref]
[10] D. Baleanu, O. G. Mustafa, R. P. Agarwal, J. Phys. A-Math. Theor. 43, 385209 (2010) http://dx.doi.org/10.1088/1751-8113/43/38/385209[Crossref]
[11] A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem (Oxford University Press, 2000)
[12] F. T. Akyildiz, H. Bellout, K. Vajravelu, R. A. Van Gorder, Nonlinear Anal.-Real 12, 2919 (2011) http://dx.doi.org/10.1016/j.nonrwa.2011.02.017[Crossref]
[13] B. Ahmad, J. J. Nieto, A. Alsaedi, M. El-Shahed, Nonlinear Anal.-Real 13, 599 (2012) http://dx.doi.org/10.1016/j.nonrwa.2011.07.052[Crossref]
[14] K. S. Miller, B. Ross, In: International Symposium on Univalent Functions, Fractional Calculus and their Applications, Nihon University, Kōriyama, Japan 139 (1988)
[15] M. Klimek, Commun. Nonlinear Sci. 16, 4689 (2011) http://dx.doi.org/10.1016/j.cnsns.2011.01.018[Crossref]
[16] K. M. Furati, Bound. Value Prob. 2012, 58 (2012) http://dx.doi.org/10.1186/1687-2770-2012-58[Crossref]
[17] K. Diethelm, N. J. Ford, A. D. Freed, Y. Luchko, Comput. Method Appl. M. 194, 743 (2005) http://dx.doi.org/10.1016/j.cma.2004.06.006[Crossref]
[18] G. B. Loghmani, S. Javanmardi, B. Malays. Math. Sci. Soc. 35, 315 (2012)
[19] Z. S. I. Mansour, Fractional Calculus & Applied Analysis 12, 159 (2009)
[20] D. Mozyrska, E. Girejko, In: A. Almeida, L. Castro, F. O. Speck (Ed.), Advances in Harmonic Analysis and Operator Theory - The Stefan Samko Anniversary Volume, Operator Theory: Advances and Applications, 388 (Birkhäuser, 2013)
[21] E. Girejko, D. Mozyrska, M. Wyrwas, Fractional Discrete Systems with Sequential h-differences, arXiv:1304.3484
[22] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations (Elsevier, 2006)
[23] R. A. C. Ferreira, D. F. M. Torres, Applicable Analysis and Discrete Mathematics 5, 110 (2011) http://dx.doi.org/10.2298/AADM110131002F[Crossref]
[24] N. R. O. Bastos, R. A. C. Ferreira, D. F. M. Torres, Discrete Cont. Dyn. S. 29, 417 (2011) http://dx.doi.org/10.3934/dcds.2011.29.417[Crossref]
[25] M. T. Holm, Ph.D. thesis, University of Nebraska (Lincoln, USA, 2011)