PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 11 | 6 | 779-791
Article title

Existence, uniqueness and limit property of solutions to quadratic Erdélyi-Kober type integral equations of fractional order

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper, we apply certain measure of noncompactness and fixed point theorem of Darbo type to derive the existence and limit property of solutions to quadratic Erdélyi-Kober type integral equations of fractional order with three parameters. Moreover, we also present the uniqueness and another existence results of the solutions to the above equations. Finally, two examples are given to illustrate the obtained results.
Publisher
Journal
Year
Volume
11
Issue
6
Pages
779-791
Physical description
Dates
published
1 - 6 - 2013
online
9 - 10 - 2013
References
  • [1] J. Banas, T. Zając, Nonlinear Anal.:TMA 71, 5491 (2009) http://dx.doi.org/10.1016/j.na.2009.04.037[Crossref]
  • [2] K. Diethelm, A.D. Freed, Scientific Computing in Chemical Engineering II, Computational Fluid Dynamics, Reaction Engineering and Molecular Properties (Springer-Verlag, Heidelberg, 1999) 2174
  • [3] L. Gaul, P. Klein, S. Kempfle, Mech. Syst. Signal Proc. 5, 81 (1991) http://dx.doi.org/10.1016/0888-3270(91)90016-X[Crossref]
  • [4] W.G. Glockle, T F. Nonnenmacher, Biophys. J. 68, 46 (1995) http://dx.doi.org/10.1016/S0006-3495(95)80157-8[Crossref]
  • [5] R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000) http://dx.doi.org/10.1142/9789812817747[Crossref]
  • [6] F. Mainardi, Fractional calculus, Fractals and Fractional Calculus in Continuum Mechanics (Springer-Verlag, Wien, 1997) 291
  • [7] F. Metzler, W. Schick, H.G. Kilian, T.F. Nonnenmache, J. Chem. Phys. 103, 7180 (1995) http://dx.doi.org/10.1063/1.470346[Crossref]
  • [8] V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media (Springer, HEP, 2010) http://dx.doi.org/10.1007/978-3-642-14003-7[Crossref]
  • [9] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus Models and Numerical Methods, Series on Complexity, Nonlinearity and Chaos (World Scientific, 2012)
  • [10] D. Baleanu, O.G. Mustafa, R.P. Agarwal, Appl. Math. Lett. 23, 1129 (2010) http://dx.doi.org/10.1016/j.aml.2010.04.049[Crossref]
  • [11] D. Baleanu, O. G. Mustafa, R. P. Agarwal, J. Phys. A: Math. Theor. 43, 385209 (2010) http://dx.doi.org/10.1088/1751-8113/43/38/385209[Crossref]
  • [12] K. Diethelm, The Analysis of Fractional Differential Equations (Lecture Notes in Mathematics, 2010) http://dx.doi.org/10.1007/978-3-642-14574-2[Crossref]
  • [13] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier Science B.V., Amsterdam, 2006)
  • [14] V. Lakshmikantham, S. Leela, J.V. Devi, Theory of Fractional Dynamic Systems (Cambridge Scientific Publishers, 2009)
  • [15] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Differential Equations (John Wiley, New York, 1993)
  • [16] I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)
  • [17] J. Banás, D. O’Regan, J. Math. Anal. Appl. 345, 573 (2008) http://dx.doi.org/10.1016/j.jmaa.2008.04.050[Crossref]
  • [18] B. Ahmad, J.J. Nieto, Topol. Method. Nonlinear Anal. 35, 295 (2010)
  • [19] Y. Zhou, F. Jiao, J. Li, Nonlinear Anal.:TMA 71, 3249 (2009) http://dx.doi.org/10.1016/j.na.2009.01.202[Crossref]
  • [20] Y. Zhou, F. Jiao, J. Li, Nonlinear Anal.:TMA 71, 2724 (2009) http://dx.doi.org/10.1016/j.na.2009.01.105[Crossref]
  • [21] Y. Zhou, F. Jiao, Nonlinear Anal.:RWA 11, 4465 (2010) http://dx.doi.org/10.1016/j.nonrwa.2010.05.029[Crossref]
  • [22] F. Jiao, Y. Zhou, Int. J. Bifurcation Chaos 22, 1 (2012) http://dx.doi.org/10.1142/S0218127412500861[Crossref]
  • [23] E. Hernández, D. O’Regan, K. Balachandran, Nonlinear Anal.:TMA 73, 3462 (2010) http://dx.doi.org/10.1016/j.na.2010.07.035[Crossref]
  • [24] B. Guo, Y. Han, J. Xin, Appl. Math. Comput. 204, 468 (2008) http://dx.doi.org/10.1016/j.amc.2008.07.003[Crossref]
  • [25] J. Hu, J. Xin, H. Lu, Comp. Math. Appl. 62, 1510 (2011) http://dx.doi.org/10.1016/j.camwa.2011.05.039[Crossref]
  • [26] R.N. Wang, D.H. Chen, T.J. Xiao, J. Differ. Equations 252, 202 (2012) http://dx.doi.org/10.1016/j.jde.2011.08.048[Crossref]
  • [27] K. Li, J. Peng, J. Jia, J. Funct. Anal. 263, 476 (2012) http://dx.doi.org/10.1016/j.jfa.2012.04.011[Crossref]
  • [28] M. Fečkan, J. Wang, Y. Zhou, J. Optim. Theory Appl. 156, 79 (2013) http://dx.doi.org/10.1007/s10957-012-0174-7[Crossref]
  • [29] J. Wang, Y. Zhou, Nonlinear Anal.:RWA 12, 262 (2011) http://dx.doi.org/10.1016/j.nonrwa.2010.06.013[Crossref]
  • [30] J. Wang, Y. Zhou, Nonlinear Anal.:RWA 12, 3642 (2011) http://dx.doi.org/10.1016/j.nonrwa.2011.06.021[Crossref]
  • [31] J. Wang, Y. Zhou, Nonlinear Anal.:TMA 74, 5929 (2011) http://dx.doi.org/10.1016/j.na.2011.05.059[Crossref]
  • [32] J. Wang, L. Lv, Y. Zhou, Commun. Nonlinear Sci. Numer. Simulat. 17, 2530 (2012) http://dx.doi.org/10.1016/j.cnsns.2011.09.030[Crossref]
  • [33] J. Wang, Y. Zhou, W. Wei, Syst. Control Lett. 61, 472 (2012) http://dx.doi.org/10.1016/j.sysconle.2011.12.009[Crossref]
  • [34] J. Wang, Z. Fan, Y. Zhou, J. Optim. Theory Appl. 154, 292 (2012) http://dx.doi.org/10.1007/s10957-012-9999-3[Crossref]
  • [35] J. Wang, Y. Zhou, W. Wei, Nonlinear Anal.:RWA 13, 2755 (2012) http://dx.doi.org/10.1016/j.nonrwa.2012.04.004[Crossref]
  • [36] J. Wang, Y. Zhou, M. Fečkan, Nonlinear Dyn. 71, 685 (2013) http://dx.doi.org/10.1007/s11071-012-0452-9[Crossref]
  • [37] J. Wang, M. Fečkan, Y. Zhou, Commun. Nonlinear Sci. Numer. Simulat. 18, 246 (2013) http://dx.doi.org/10.1016/j.cnsns.2012.07.004[Crossref]
  • [38] S. Kumar, N. Sukavanam, J. Differ. Equations 252, 6163 (2012) http://dx.doi.org/10.1016/j.jde.2012.02.014[Crossref]
  • [39] V. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Res. Notes Math. Ser. 301 (Longman, New York, 1994)
  • [40] J. Appell, P.P. Zabrejko, Nonlinear Superposition Operators (Cambridge University Press, 1990) http://dx.doi.org/10.1017/CBO9780511897450[Crossref]
  • [41] J. Banas, K. Goebel, Measure of Noncompactness in Banach Spaces (Marcel Dekker Inc., New York, 1980)
  • [42] J.A. Toledano, T.D. Benavides, J.L. Acedo, Measures of Noncompactness in Metric Fixed Point Theory (Birkhäuser, Basel, 1997) http://dx.doi.org/10.1007/978-3-0348-8920-9[Crossref]
  • [43] A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, Integral and Series, Elementary Functions I (Nauka, Moscow, 1981)
  • [44] S. Hu, M. Khavanin, W. Zhuang, Appl. Anal. 34, 261 (1989) http://dx.doi.org/10.1080/00036818908839899[Crossref]
  • [45] C.T. Kelly, J. Integral Eqs. 4, 221 (1982)
  • [46] J. Wang, X. Dong, Y. Zhou, Commun. Nonlinear Sci. Numer. Simulat. 17, 3129 (2012) http://dx.doi.org/10.1016/j.cnsns.2011.12.002[Crossref]
  • [47] B.E. Meserve, Fundamental Concepts of Algebra (Dover Publicatins, New York, 1982)
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0219-z
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.