Preferences help
enabled [disable] Abstract
Number of results
2013 | 11 | 10 | 1246-1254
Article title

A fractional approach to the Sturm-Liouville problem

Title variants
Languages of publication
The objective of this paper is to show an approach to the fractional version of the Sturm-Liouville problem, by using different fractional operators that return to the ordinary operator for integer order. For each fractional operator we study some of the basic properties of the Sturm-Liouville theory. We analyze a particular example that evidences the applicability of the fractional Sturm-Liouville theory.
Physical description
1 - 10 - 2013
19 - 12 - 2013
  • Facultad de Matemáticas, Universidad de La Laguna, 38271, La Laguna, Tenerife, Spain
  • Facultad de Matemáticas, Universidad de La Laguna, 38271, La Laguna, Tenerife, Spain
  • Estadística e Investigación Operativa, Centro Universitario de la Defensa Área de Matemáticas, 50090, Zaragoza, Spain
  • [1] W.E. Boyce, R.C. DiPrima, Elementary differential equations and boundary value problems (John Wiley and Sons, USA, 2005)
  • [2] R.V. Churchill, J.W. Brown, Fourier series and boundary value problems (McGraw-Hill, New York, 1993)
  • [3] E.A. Coddington, R. Carlson, Linear ordinary differential equations (Siam, Philadelphia, 1997)[Crossref]
  • [4] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods, In: Series on Complexity, Nonlinearity and Chaos (World Scientific, Singapore, 2012)
  • [5] R.L. Magin, Fractional Calculus in Bioengineering (Begell House, Connecticut, 2006)
  • [6] F. Mainardi, Fractional Calculus and waves in linear viscoelasticity: An introduction to mathematical models (Imperial College Press, London, 2010)[Crossref]
  • [7] J. Sabatier, O.P. Agrawal, J.A. Tenreiro (Eds.), Advances in fractional calculus: Theoretical developments and applications in physics and engineering (Springer, Netherlands 2007)
  • [8] J. Tenreiro, V. Kiryakova, F. Mainardi, Commun. Nonlinear Sci. 16, 1140 (2011)[Crossref]
  • [9] D. Baleanu, Signal Process. 86, 2632 (2006)[Crossref]
  • [10] D. Baleanu, Commun. Nonlinear Sci. 14, 2520 (2009)[Crossref]
  • [11] H. Delavari, D.M. Senejohnny, D. Baleanu, Cent. Eur. J. Phys. 10, 1095 (2012)[Crossref]
  • [12] D. Baleanu, O.G. Mustafa, R.P. Agarwal, J. Phys. A - Math. Theor. 43, 385209 (2010)[Crossref]
  • [13] S. Abbasbandy, A. Shizardi, Numer. Algorithms 54, 521 (2010)[Crossref]
  • [14] Q.M. Al-Mdallal, Chaos Soliton. Fract. 40, 138 (2009)[Crossref]
  • [15] M.M. Djrbashian, Izv. Akad. Nauk Armjan. SSR Ser. Mat. 5, 71 (1970)
  • [16] M. D’Ovidio, Stoch. Proc. Appl. 122, 3513 (2012)[Crossref]
  • [17] V.S. Erturk, Math. Comput. Appl. 16, 712 (2011)
  • [18] A.K. Golmankhaneh, T. Khatuni, N.A. Porghoveh, D. Baleanu, Cent. Eur. J. Phys. 10, 966 (2012)[Crossref]
  • [19] B. Jin, W. Rundell, J. Comput. Phys. 231, 4954 (2012)[Crossref]
  • [20] Y. Liu, T. He, H. Shi, U.P.B. Sci. Bull. 74, 93 (2012)
  • [21] A.M. Nahusev, Dokl. Akad. Nauk SSSR, 234, 308 (1977)
  • [22] M. Klimek, On solutions of linear fractional differential equations of a variational type (Layout, Czestochowa, 2009)
  • [23] M. Klimek, O.P. Agrawal, On a regular fractional Sturm-Liouville problem with derivatives of order in (0,1), in: I. Petrás, I. Podlubny, K. Kostúr, Ján Kacur, A. Mojzisová (Eds.), Proceedings of the 13th International Carpathian Control Conference, May. 28–31, 2012, Vysoke Tatry, Slovakia (IEEE Explore Digital Library, 2012)
  • [24] K. Diethelm, The analysis of fractional differential equations (Springer, New York, 2010)[Crossref]
  • [25] A.A. Kilbas, H.M. Srivastava, J.J Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)
  • [26] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley and Sons, New York, 1993)
  • [27] K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Application of Differentiation and Integration to Arbitrary Order (Academic Press, New York, 1974)
  • [28] I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)
  • [29] G.M. Zaslavsky, D. Baleanu, J.A. Tenreiro (Eds.), Fractional Differentiation and its Applications (Physica Scripta, 2009) [WoS]
  • [30] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach Science Publishers, Switzerland, 1993)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.