Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 11 | 10 | 1470-1481

Article title

Numerical solution of fractional differential equations via a Volterra integral equation approach

Content

Title variants

Languages of publication

EN

Abstracts

EN
The main focus of this paper is to present a numerical method for the solution of fractional differential equations. In this method, the properties of the Caputo derivative are used to reduce the given fractional differential equation into a Volterra integral equation. The entire domain is divided into several small domains, and by collocating the integral equation at two adjacent points a system of two algebraic equations in two unknowns is obtained. The method is applied to solve linear and nonlinear fractional differential equations. Also the error analysis is presented. Some examples are given and the numerical simulations are also provided to illustrate the effectiveness of the new method.

Publisher

Journal

Year

Volume

11

Issue

10

Pages

1470-1481

Physical description

Dates

published
1 - 10 - 2013
online
19 - 12 - 2013

Contributors

  • Department of Applied Mathematics, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
  • Department of Applied Mathematics, Amirkabir University of Technology, No. 424 Hafez Avenue, Tehran, Iran
author
  • Department of Applied Mathematics, Amirkabir University of Technology, No. 424 Hafez Avenue, Tehran, Iran

References

  • [1] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach, Yverdon, 1993)
  • [2] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity (Imperial College Press, London, 2010) http://dx.doi.org/10.1142/9781848163300[Crossref]
  • [3] I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, CA, 1999)
  • [4] R. Hilfer (Ed.), Applications of Fractional Calculus in Physics (World Scientific, Singapore, 2000)
  • [5] K. Diethelm, The Analysis of Fractional Differential Equations (Springer-Verlag, Berlin, 2010) http://dx.doi.org/10.1007/978-3-642-14574-2[Crossref]
  • [6] R. Herrmann, Fractional Calculus: An Introduction for Physicists (World Scientific, Singapore, 2011) http://dx.doi.org/10.1142/8072[Crossref]
  • [7] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus: Models and Numerical Methods (World Scientific, Singapore, 2012)
  • [8] R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000) http://dx.doi.org/10.1016/S0370-1573(00)00070-3[Crossref]
  • [9] K. Diethelm, N. J. Ford, A. D. Freed, Y. Luchko, Comput. Methods Appl. Mech. Engrg. 194, 743 (2005) http://dx.doi.org/10.1016/j.cma.2004.06.006[Crossref]
  • [10] Y. A. Rossikhin, M. V. Shitikova, Appl. Mech. Rev. 63, 010801 (2010) http://dx.doi.org/10.1115/1.4000563[Crossref]
  • [11] R. Magin, M. D. Ortigueira, I. Podlubny, J. J. Trujillo, Signal Process. 91, 350 (2011) http://dx.doi.org/10.1016/j.sigpro.2010.08.003[Crossref]
  • [12] D. Baleanu, A. K. Golmankhaneh, R. Nigmatullin, A. K. Golmankhaneh, Cent. Eur. J. Phys. 8, 120 (2010) http://dx.doi.org/10.2478/s11534-009-0085-x[Crossref]
  • [13] N. J. Ford, J. A. Connolly, Commun. Pure Appl. Anal. 5, 289 (2006) http://dx.doi.org/10.3934/cpaa.2006.5.289[Crossref]
  • [14] K. Diethelm, J. M. Ford, N. J. Ford, M. Weilbeer, J. Comput. Appl. Math. 186, 482 (2006) http://dx.doi.org/10.1016/j.cam.2005.03.023[Crossref]
  • [15] K. Diethelm, N. J. Ford, A. D. Freed, Numer. Algorithms 36, 31 (2004) http://dx.doi.org/10.1023/B:NUMA.0000027736.85078.be[Crossref]
  • [16] A. Saadatmandi, M. Dehghan, Comput. Math. Appl. 59, 1326 (2010) http://dx.doi.org/10.1016/j.camwa.2009.07.006[Crossref]
  • [17] R. Garrappa, M. Popolizio, J. Comput. Appl. Math. 235, 1085 (2011) http://dx.doi.org/10.1016/j.cam.2010.07.008[Crossref]
  • [18] S. Esmaeili, M. Shamsi, Y. Luchko, Comput. Math. Appl. 62, 918 (2011) http://dx.doi.org/10.1016/j.camwa.2011.04.023[Crossref]
  • [19] H. Jafari, H. Tajadodi, D. Baleanu, Fract. Calc. Appl. Anal. 16, 109 (2013)
  • [20] I. Podlubny, Fract. Calc. Appl. Anal. 3, 359 (2000)
  • [21] S. Esmaeili, M. Shamsi, Commun. Nonlinear Sci. 16, 3646 (2011) http://dx.doi.org/10.1016/j.cnsns.2010.12.008[Crossref]
  • [22] G. Baumann, F. Stenger, Fract. Calc. Appl. Anal. 14, 568 (2011)
  • [23] A. K. Golmankhaneh, T. Khatuni, N. A. Porghoveh, D. Baleanu, Cent. Eur. J. Phys. 10, 966 (2012) http://dx.doi.org/10.2478/s11534-012-0038-7[Crossref]
  • [24] E. H. Doha, A. H. Bhrawy, S. S. Ezz-Eldien, Appl. Math. Model. 36, 4931 (2012) http://dx.doi.org/10.1016/j.apm.2011.12.031[Crossref]
  • [25] M. Lakestani, M. Dehghan, S. Irandoust, Commun. Nonlinear Sci. 17, 1149 (2012) http://dx.doi.org/10.1016/j.cnsns.2011.07.018[Crossref]
  • [26] C. Li, F. Zheng, F. Liu, Fract. Calc. Appl. Anal. 15, 383 (2012)
  • [27] J. Cao, C. Xu, J. Comput. Phys. 238, 154 (2013) http://dx.doi.org/10.1016/j.jcp.2012.12.013[Crossref]
  • [28] P. Linz, Analytical and Numerical Methods for Volterra Integral Equations (SIAM, Philadelphia, 1985) http://dx.doi.org/10.1137/1.9781611970852[Crossref]
  • [29] H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations (Cambridge University Press, Cambridge, 2004) http://dx.doi.org/10.1017/CBO9780511543234[Crossref]
  • [30] P. Kumar, O. P. Agrawal, Signal Process. 86, 2602 (2006) http://dx.doi.org/10.1016/j.sigpro.2006.02.007[Crossref]
  • [31] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions (U.S. Government Printing Office, Washington, D.C., 1970)
  • [32] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, NIST Handbook of Mathematical Functions (Cambridge University Press, New York, 2010)
  • [33] H. Engels, Numerical Quadrature and Cubature (Academic Press, London, 1980)
  • [34] R. Garrappa, M. Popolizio, Comput. Math. Appl. 62, 876 (2011) http://dx.doi.org/10.1016/j.camwa.2011.04.054[Crossref]
  • [35] R. Gorenflo, J. Loutchko, Y. Luchko, Fract. Calc. Appl. Anal. 5, 491 (2002)
  • [36] J. Huang, Y. Tang, L. Vázquez, Numer. Math. Theor. Meth. Appl. 5, 229 (2012) http://dx.doi.org/10.4208/nmtma.2012.m1038[Crossref]
  • [37] G. M. Zaslavsky, A. A. Stanislavsky, M. Edelman, Chaos 16, 013102 (2006) http://dx.doi.org/10.1063/1.2126806[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-013-0212-6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.