PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 11 | 10 | 1194-1211
Article title

Vectorial fractional integral inequalities with convexity

Content
Title variants
Languages of publication
EN
Abstracts
EN
Here we present vectorial general integral inequalities involving products of multivariate convex and increasing functions applied to vectors of functions. As specific applications we derive a wide range of vectorial fractional inequalities of Hardy type. These involve the left and right: Erdélyi-Kober fractional integrals, mixed Riemann-Liouville fractional multiple integrals. Next we produce multivariate Poincaré type vectorial fractional inequalities involving left fractional radial derivatives of Canavati type, Riemann-Liouville and Caputo types. The exposed inequalities are of L
p type, p ≥ 1, and exponential type.
Publisher
Journal
Year
Volume
11
Issue
10
Pages
1194-1211
Physical description
Dates
published
1 - 10 - 2013
online
19 - 12 - 2013
References
  • [1] G.A. Anastassiou, Fractional Differentiation Inequalities, Research Monograph, (Springer, New York, 2009) http://dx.doi.org/10.1007/978-0-387-98128-4[Crossref]
  • [2] G.A. Anastassiou, Chaos, Soliton. Fract. 42, 365 (2009) http://dx.doi.org/10.1016/j.chaos.2008.12.013[Crossref]
  • [3] G.A. Anastassiou, Chaos, Soliton. Fract. 42, 1523 (2009) http://dx.doi.org/10.1016/j.chaos.2009.03.047[Crossref]
  • [4] G.A. Anastassiou, Chaos, Soliton. Fract. 42, 2080 (2009) http://dx.doi.org/10.1016/j.chaos.2009.03.183[Crossref]
  • [5] G.A. Anastassiou, Mathematical and Computer Modelling 54, 3098 (2011) http://dx.doi.org/10.1016/j.mcm.2011.07.040[Crossref]
  • [6] G.A. Anastassiou, Vectorial Hardy type fractional inequalities, submitted, (2012)
  • [7] D. Baleanu, O.G. Mustafa, R.P. Agarwal, Appl. Math. Lett. 23, 1129 (2010) http://dx.doi.org/10.1016/j.aml.2010.04.049[Crossref]
  • [8] D. Baleanu, O.G. Mustafa, R.P. Agarwal, J. Phys. A: Math. Theor. 43, 385209 (2010) http://dx.doi.org/10.1088/1751-8113/43/38/385209[Crossref]
  • [9] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods, in: Series on Complexity, Nonlinearity and Chaos, (World Scientific, Singapore, 2012)
  • [10] J.A. Canavati, Nieuw Archief Voor Wiskunde 5, 53 (1987)
  • [11] Kai Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, Vol 2004, 1st edition, (Springer, New York, Heidelberg, 2010) http://dx.doi.org/10.1007/978-3-642-14574-2[Crossref]
  • [12] A.M.A. El-Sayed, M. Gaber, Electron. J. Theor. Phys. 3, 81 (2006)
  • [13] R. Gorenflo, F. Mainardi, Essentials of Fractional Calculus, 2000, Maphysto Center, http://www.maphysto.dk/oldpages/events/LevyCAC2000/MainardiNotes/fm2k0a.ps
  • [14] G.D. Handley, J.J. Koliha, J. Pecaric, Fract. Calc. Appl. Anal. 4, 37 (2001)
  • [15] H.G. Hardy, Messenger of Mathematics 47, 145 (1918)
  • [16] S. Iqbal, K. Krulic, J. Pecaric, J. Inequal. Appl. 264347 (2010)
  • [17] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, (Elsevier, New York, NY, USA, 2006)
  • [18] T. Mamatov, S. Samko, Fract. Calc. Appl. Anal. 13, 245 (2010)
  • [19] W. Rudin, Real and Complex Analysis, International Student Edition, (Mc Graw Hill, London, New York, 1970)
  • [20] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integral and Derivatives: Theory and Applications, (Gordon and Breach Science Publishers, Yverdon, Switzerland, 1993)
  • [21] D. Stroock, A Concise Introduction to the Theory of Integration, Third Edition, (Birkhäuser, Boston, Basel, Berlin, 1999)
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0210-8
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.