Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 11 | 10 | 1194-1211

Article title

Vectorial fractional integral inequalities with convexity

Content

Title variants

Languages of publication

EN

Abstracts

EN
Here we present vectorial general integral inequalities involving products of multivariate convex and increasing functions applied to vectors of functions. As specific applications we derive a wide range of vectorial fractional inequalities of Hardy type. These involve the left and right: Erdélyi-Kober fractional integrals, mixed Riemann-Liouville fractional multiple integrals. Next we produce multivariate Poincaré type vectorial fractional inequalities involving left fractional radial derivatives of Canavati type, Riemann-Liouville and Caputo types. The exposed inequalities are of L
p type, p ≥ 1, and exponential type.

Publisher

Journal

Year

Volume

11

Issue

10

Pages

1194-1211

Physical description

Dates

published
1 - 10 - 2013
online
19 - 12 - 2013

Contributors

  • Department of Mathematical Sciences, University of Memphis, Memphis, TN, 38152, USA

References

  • [1] G.A. Anastassiou, Fractional Differentiation Inequalities, Research Monograph, (Springer, New York, 2009) http://dx.doi.org/10.1007/978-0-387-98128-4[Crossref]
  • [2] G.A. Anastassiou, Chaos, Soliton. Fract. 42, 365 (2009) http://dx.doi.org/10.1016/j.chaos.2008.12.013[Crossref]
  • [3] G.A. Anastassiou, Chaos, Soliton. Fract. 42, 1523 (2009) http://dx.doi.org/10.1016/j.chaos.2009.03.047[Crossref]
  • [4] G.A. Anastassiou, Chaos, Soliton. Fract. 42, 2080 (2009) http://dx.doi.org/10.1016/j.chaos.2009.03.183[Crossref]
  • [5] G.A. Anastassiou, Mathematical and Computer Modelling 54, 3098 (2011) http://dx.doi.org/10.1016/j.mcm.2011.07.040[Crossref]
  • [6] G.A. Anastassiou, Vectorial Hardy type fractional inequalities, submitted, (2012)
  • [7] D. Baleanu, O.G. Mustafa, R.P. Agarwal, Appl. Math. Lett. 23, 1129 (2010) http://dx.doi.org/10.1016/j.aml.2010.04.049[Crossref]
  • [8] D. Baleanu, O.G. Mustafa, R.P. Agarwal, J. Phys. A: Math. Theor. 43, 385209 (2010) http://dx.doi.org/10.1088/1751-8113/43/38/385209[Crossref]
  • [9] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus Models and Numerical Methods, in: Series on Complexity, Nonlinearity and Chaos, (World Scientific, Singapore, 2012)
  • [10] J.A. Canavati, Nieuw Archief Voor Wiskunde 5, 53 (1987)
  • [11] Kai Diethelm, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, Vol 2004, 1st edition, (Springer, New York, Heidelberg, 2010) http://dx.doi.org/10.1007/978-3-642-14574-2[Crossref]
  • [12] A.M.A. El-Sayed, M. Gaber, Electron. J. Theor. Phys. 3, 81 (2006)
  • [13] R. Gorenflo, F. Mainardi, Essentials of Fractional Calculus, 2000, Maphysto Center, http://www.maphysto.dk/oldpages/events/LevyCAC2000/MainardiNotes/fm2k0a.ps
  • [14] G.D. Handley, J.J. Koliha, J. Pecaric, Fract. Calc. Appl. Anal. 4, 37 (2001)
  • [15] H.G. Hardy, Messenger of Mathematics 47, 145 (1918)
  • [16] S. Iqbal, K. Krulic, J. Pecaric, J. Inequal. Appl. 264347 (2010)
  • [17] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, (Elsevier, New York, NY, USA, 2006)
  • [18] T. Mamatov, S. Samko, Fract. Calc. Appl. Anal. 13, 245 (2010)
  • [19] W. Rudin, Real and Complex Analysis, International Student Edition, (Mc Graw Hill, London, New York, 1970)
  • [20] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integral and Derivatives: Theory and Applications, (Gordon and Breach Science Publishers, Yverdon, Switzerland, 1993)
  • [21] D. Stroock, A Concise Introduction to the Theory of Integration, Third Edition, (Birkhäuser, Boston, Basel, Berlin, 1999)

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-013-0210-8
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.