Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 11 | 6 | 691-701

Article title

Noether’s theorem for fractional variational problems of variable order

Content

Title variants

Languages of publication

EN

Abstracts

EN
We prove a necessary optimality condition of Euler-Lagrange type for fractional variational problems with derivatives of incommensurate variable order. This allows us to state a version of Noether’s theorem without transformation of the independent (time) variable. Considered derivatives of variable order are defined in the sense of Caputo.

Publisher

Journal

Year

Volume

11

Issue

6

Pages

691-701

Physical description

Dates

published
1 - 6 - 2013
online
9 - 10 - 2013

Contributors

  • Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193, Aveiro, Portugal
  • Faculty of Computer Science, Bialystok University of Technology, 15-351, Białystok, Poland
author
  • Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, 3810-193, Aveiro, Portugal

References

  • [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations (Elsevier, Amsterdam, 2006) 204
  • [2] M. Klimek, On solutions of linear fractional differential equations of a variational type (The Publishing Office of Czestochowa University of Technology, Czestochowa, 2009)
  • [3] I. Podlubny, Fractional differential equations, Mathematics in Science and Engineering (Academic Press, San Diego, CA, 1999) 198
  • [4] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives (Gordon and Breach, Yverdon, 1993)
  • [5] R. Caponetto, G. Dongola, L. Fortuna, I. Petras, Fractional Order Systems: Modeling and Control Applications (World Scientific Company, Singapore, 2010)
  • [6] F. Jarad, T. Abdeljawad, D. Baleanu, Nonlinear Anal. Real World Appl. 14, 780 (2013) http://dx.doi.org/10.1016/j.nonrwa.2012.08.001[Crossref]
  • [7] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus (World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012)
  • [8] M. D. Ortigueira, Fractional calculus for scientists and engineers, Lecture Notes in Electrical Engineering (Springer, Dordrecht, 2011) 84 http://dx.doi.org/10.1007/978-94-007-0747-4[Crossref]
  • [9] J. A. Tenreiro Machado, V. Kiryakova, F. Mainardi, Commun. Nonlinear Sci. Numer. Simul. 16, 1140 (2011) http://dx.doi.org/10.1016/j.cnsns.2010.05.027[Crossref]
  • [10] S. G. Samko, B. Ross, Integral Transform. Spec. Funct. 1, 277 (1993) http://dx.doi.org/10.1080/10652469308819027[Crossref]
  • [11] S. G. Samko, Anal. Math. 21, 213 (1995) http://dx.doi.org/10.1007/BF01911126[Crossref]
  • [12] B. Ross, S. G. Samko, Internat. J. Math. Math. Sci. 18, 777 (1995) http://dx.doi.org/10.1155/S0161171295001001[Crossref]
  • [13] C. F. M. Coimbra, Ann. Phys. 12, 692 (2003) http://dx.doi.org/10.1002/andp.200310032[Crossref]
  • [14] G. Diaz, C. F. M. Coimbra, Nonlinear Dynam. 56, 145 (2009) http://dx.doi.org/10.1007/s11071-008-9385-8[Crossref]
  • [15] C. F. Lorenzo, T. T. Hartley, Nonlinear Dynam. 29, 57 (2002) http://dx.doi.org/10.1023/A:1016586905654[Crossref]
  • [16] L. E. S. Ramirez, C. F. M. Coimbra, Int. J. Differ. Equ. 2010, 16 (2010)
  • [17] L. E. S. Ramirez, C. F. M. Coimbra, Phys. D 240, 1111 (2011) http://dx.doi.org/10.1016/j.physd.2011.04.001[Crossref]
  • [18] F. Riewe, Phys. Rev. E 53, 1890 (1996) http://dx.doi.org/10.1103/PhysRevE.53.1890[Crossref]
  • [19] F. Riewe, Phys. Rev. E 55, 3581 (1997) http://dx.doi.org/10.1103/PhysRevE.55.3581[Crossref]
  • [20] O. P. Agrawal, S. I. Muslih, D. Baleanu, Commun. Nonlinear Sci. Numer. Simul. 16, 4756 (2011) http://dx.doi.org/10.1016/j.cnsns.2011.05.002[Crossref]
  • [21] R. Almeida, D. F. M. Torres, Appl. Math. Lett. 22, 1816 (2009) http://dx.doi.org/10.1016/j.aml.2009.07.002[Crossref]
  • [22] D. Baleanu, T. Avkar, Nuovo Cimento Soc. Ital. Fis. B 119, 73 (2004)
  • [23] D. Baleanu, S. I. Muslih, Phys. Scripta 72, 119 (2005) http://dx.doi.org/10.1238/Physica.Regular.072a00119[Crossref]
  • [24] N. R. O. Bastos, R. A. C. Ferreira, D. F. M. Torres, Discrete Contin. Dyn. Syst. 29, 417 (2011) http://dx.doi.org/10.3934/dcds.2011.29.417[Crossref]
  • [25] J. Cresson, J. Math. Phys. 48, 34 (2007)
  • [26] G. S. F. Frederico, D. F. M. Torres, Appl. Math. Comput. 217, 1023 (2010) http://dx.doi.org/10.1016/j.amc.2010.01.100[Crossref]
  • [27] M. A. E. Herzallah, D. Baleanu, Nonlinear Dynam. 69, 977 (2012) http://dx.doi.org/10.1007/s11071-011-0319-5[Crossref]
  • [28] D. Mozyrska, D. F. M. Torres, Carpathian J. Math. 26, 210 (2010)
  • [29] D. Mozyrska, D. F. M. Torres, Signal Process. 91, 379 (2011) http://dx.doi.org/10.1016/j.sigpro.2010.07.016[Crossref]
  • [30] A. B. Malinowska, D. F. M. Torres, Introduction to the fractional calculus of variations (Imp. Coll. Press, London, 2012)
  • [31] T. M. Atanackovic, S. Pilipovic, Fract. Calc. Appl. Anal. 14, 94 (2011)
  • [32] T. Odzijewicz, A. B. Malinowska, D. F. M. Torres, Variable order fractional variational calculus for double integrals, Proc. 51st IEEE Conference on Decision and Control, Dec. 10–13, 2012, Maui, Hawaii, art. no. 6426489, 6873
  • [33] T. Odzijewicz, A. B. Malinowska, D. F. M. Torres, In: A. Almeida, L. P. Castro, F.-O. Speck (Eds.), Fractional variational calculus of variable order, Advances in Harmonic Analysis and Operator Theory (Birkhäuser, Basel, 2013) 291
  • [34] J. Jost, X. Li-Jost, Calculus of variations (Cambridge Univ. Press, Cambridge, 1998)
  • [35] Y. Kosmann-Schwarzbach, The Noether theorems: Invariance and conservation laws in the twentieth century (Springer, New York, 2011) http://dx.doi.org/10.1007/978-0-387-87868-3[Crossref]
  • [36] B. van Brunt, The calculus of variations (Springer, New York, 2004)
  • [37] T. M. Atanackovic, S. Konjik, S. Pilipovic, S. Simic, Nonlinear Anal. 71, 1504 (2009) http://dx.doi.org/10.1016/j.na.2008.12.043[Crossref]
  • [38] G. S. F. Frederico, D. F. M. Torres, J. Math. Anal. Appl. 334, 834 (2007) http://dx.doi.org/10.1016/j.jmaa.2007.01.013[Crossref]
  • [39] G. S. F. Frederico, D. F. M. Torres, Nonlinear Dynam. 53, 215 (2008) http://dx.doi.org/10.1007/s11071-007-9309-z[Crossref]
  • [40] P. Ivady, J. Math. Inequal. 3, 227 (2009) http://dx.doi.org/10.7153/jmi-03-23[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-013-0208-2
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.