Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 11 | 6 | 799-805

Article title

Fractional diffusion equation in half-space with Robin boundary condition

Content

Languages of publication

EN

Abstracts

EN
The initial and boundary value problem for the fractional diffusion equation in half-space with the Robin boundary condition is considered. The solution is comprised of two parts: the contribution of the initial value and the contribution of the boundary value, for which the respective fundamental solutions are given. Finally, the solution formula of the considered problem is obtained.

Publisher

Journal

Year

Volume

11

Issue

6

Pages

799-805

Dates

published
1 - 6 - 2013
online
9 - 10 - 2013

Contributors

author
  • School of Mathematics and Information Sciences, Zhaoqing University, Zhaoqing, Guang Dong, 526061, P.R. China
author
  • School of Mathematics and Information Sciences, Zhaoqing University, Zhaoqing, Guang Dong, 526061, P.R. China

References

  • [1] K. B. Oldham, J. Spanier, The Fractional Calculus (Academic, New York, 1974)
  • [2] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993)
  • [3] F. Mainardi, In: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics (Springer-Verlag, Wien/New York, 1997) 291
  • [4] I. Podlubny, Fractional Differential Equations (Academic, San Diego, 1999)
  • [5] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)
  • [6] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity (Imperial College, London, 2010) http://dx.doi.org/10.1142/9781848163300[Crossref]
  • [7] J. Klafter, S. C. Lim, R. Metzler, Fractional Dynamics: Recent Advances (World Scientific, Singapore, 2011) http://dx.doi.org/10.1142/8087[Crossref]
  • [8] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus Models and Numerical Methods (Series on Complexity, Nonlinearity and Chaos) (World Scientific, Boston, 2012)
  • [9] H. Jafari, H. Tajadodi, D. Baleanu, Fract. Calc. Appl. Anal. 16, 109 (2013)
  • [10] D. Baleanu, O. G. Mustafa, D. O’Regan, Adv. Differ. Equ. 2012, 145 (2012) http://dx.doi.org/10.1186/1687-1847-2012-145[Crossref]
  • [11] H. Jafari, A. Kadem, D. Baleanu, T. Yilmaz, Rom. Rep. Phys. 64, 337 (2012)
  • [12] J. S. Duan, T. Chaolu, R. Rach, Appl. Math. Comput. 218, 8370 (2012) http://dx.doi.org/10.1016/j.amc.2012.01.063[Crossref]
  • [13] J. S. Duan, R. Rach, D. Baleanu, A. M. Wazwaz, Commun. Frac. Calc. 3, 73 (2012)
  • [14] J. S. Duan, Z. Wang, Y. L. Liu, X. Qiu, Chaos Soliton. Fract. 46, 46 (2013) http://dx.doi.org/10.1016/j.chaos.2012.11.004[Crossref]
  • [15] M. Giona, H. E. Roman, Physica A 185, 87 (1992) http://dx.doi.org/10.1016/0378-4371(92)90441-R[Crossref]
  • [16] F. Mainardi, Appl. Math. Lett. 9, 23 (1996) http://dx.doi.org/10.1016/0893-9659(96)00089-4[Crossref]
  • [17] F. Mainardi, Chaos Soliton. Fract. 7, 1461 (1996) http://dx.doi.org/10.1016/0960-0779(95)00125-5[Crossref]
  • [18] R. R. Nigmatullin, Phys. Stat. Sol. B 133, 425 (1986) http://dx.doi.org/10.1002/pssb.2221330150[Crossref]
  • [19] R. Metzler, J. Klafter, Physica A 278, 107 (2000) http://dx.doi.org/10.1016/S0378-4371(99)00503-8[Crossref]
  • [20] J. S. Duan, J. Math. Phys. 46, 13504 (2005) http://dx.doi.org/10.1063/1.1819524[Crossref]
  • [21] B. Davies, Integral Transforms and Their Applications, 3rd edition (Springer-Verlag, New York, 2001)
  • [22] R. Gorenflo, J. Loutchko, Y. Luchko, Fract. Calc. Appl. Anal. 5, 491 (2002)
  • [23] J. Abate, P. P. Valkó, Int. J. Numer. Meth. Engng. 60, 979 (2004) http://dx.doi.org/10.1002/nme.995[Crossref]

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-013-0206-4