PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 11 | 6 | 634-645
Article title

Fractional dynamics of tracer transport in fractured media from local to regional scales

Content
Title variants
Languages of publication
EN
Abstracts
EN
Tracer transport through fractured media exhibits concurrent direction-dependent super-diffusive spreading along high-permeability fractures and sub-diffusion caused by mass transfer between fractures and the rock matrix. The resultant complex dynamics challenge the applicability of conventional physical models based on Fick’s law. This study proposes a multi-scaling tempered fractional-derivative (TFD) model to explore fractional dynamics for tracer transport in fractured media. Applications show that the TFD model can capture anomalous transport observed in small-scale single fractures, intermediate-scale fractured aquifers, and two-dimensional large-scale discrete fracture networks. Tracer transport in fractured media from local (0.255-meter long) to regional (400-meter long) scales therefore can be quantified by a general fractional-derivative model. Fractional dynamics in fractured media can be scale dependent, owning to 1) the finite length of fractures that constrains the large displacement of tracers, and 2) the increasing mass exchange capacity along the travel path that enhances sub-diffusion.
Publisher

Journal
Year
Volume
11
Issue
6
Pages
634-645
Physical description
Dates
published
1 - 6 - 2013
online
9 - 10 - 2013
Contributors
author
  • Desert Research Institute, 755 E. Flamingo Road, Las Vegas, NV, 89119, USA, Yong.Zhang@dri.edu
author
  • Desert Research Institute, 2212 Raggio Parkway, Reno, NV, 89512, USA
author
  • Desert Research Institute, 755 E. Flamingo Road, Las Vegas, NV, 89119, USA
author
  • Desert Research Institute, 755 E. Flamingo Road, Las Vegas, NV, 89119, USA
  • Desert Research Institute, 755 E. Flamingo Road, Las Vegas, NV, 89119, USA
References
  • [1] R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000) http://dx.doi.org/10.1016/S0370-1573(00)00070-3[Crossref]
  • [2] R. Metzler, J. Klafter, J. Phys. A: Math. Gen. 37, R161 (2004) http://dx.doi.org/10.1088/0305-4470/37/31/R01[Crossref]
  • [3] G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics (Oxford University Press, Oxford, UK, 2008)
  • [4] V. Lakshmikantham, S. Leela, J. Vasundhara Devi, Theory of Fractional Dynamic Systems (Cambridge Scientific Publishers, Cambridge, UK, 2009)
  • [5] J. Klafter, S. C. Lim, R. Metzler, Fractional Dynamics: Recent Advances (World Scientific Publishing Company, New York, NY, 2011) http://dx.doi.org/10.1142/8087[Crossref]
  • [6] Y. Zhang, D. A. Benson, D. M. Reeves, Adv. Water Resour. 32, 561 (2009) http://dx.doi.org/10.1016/j.advwatres.2009.01.008[Crossref]
  • [7] S. P. Neuman, Hydrogeol. J. 13, 124 (2005) http://dx.doi.org/10.1007/s10040-004-0397-2[Crossref]
  • [8] C. F. Tsang, I. Neretnieks, Rev. Geophys. 36, 275 (1998) http://dx.doi.org/10.1029/97RG03319[Crossref]
  • [9] B. Berkowitz, Adv. Water Resour. 25, 861 (2002) http://dx.doi.org/10.1016/S0309-1708(02)00042-8[Crossref]
  • [10] D. M. Reeves, D. A. Benson, M. M. Meerschaert, Water Resour. Res. 44, W05404 (2008)
  • [11] D. M. Reeves, D. A. Benson, M. M. Meerschaert, H. P. Scheffler, Water Resour. Res. 44, W05410 (2008)
  • [12] A. G. Nowamooz, G. Radilla, M. Fourar, Water Resour. Res. 45, W07406 (2009) http://dx.doi.org/10.1029/2008WR007315[Crossref]
  • [13] Y. Zhang, B. Baeumer, D. M. Reeves, Geophy. Res. Lett. 37, L11405 (2010)
  • [14] D. M. Reeves, D. A. Benson, M. M. Meerschaert, Water Resour. Res. 44, W08405 (2008)
  • [15] D. A. Benson, C. Tadjeran, M. M. Meerschaert, I. Farnham, G. Pohll, Water Resour. Res. 40, W12416 (2004) http://dx.doi.org/10.1029/2004WR003314[Crossref]
  • [16] J. Z. Qian, H. B. Zhan, Z. Chen, S. H. Luo, J. Hydrol. 399, 246 (2011) http://dx.doi.org/10.1016/j.jhydrol.2011.01.003[Crossref]
  • [17] R. Munier, Statistical analysis of fracture data adapted for modelling discrete fracture networks version 2, Rep. R 04-66 (Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden, 2004)
  • [18] D. M. Reeves, R. Parashar, Y. Zhang, Hydrogeologic characterization of fractured rock masses intended for disposal of radioactive waste, In: Radioactive Waste, Ed. R. A. Rahman (InTech Publishing, New York, NY, 2012)
  • [19] L. Smith, F. W. Schwartz, Water Resour. Res. 20, 1241 (1984) http://dx.doi.org/10.1029/WR020i009p01241[Crossref]
  • [20] D. F. Boutt, G. Grasselli, J. T. Fredrich, B. K. Cook, J. R. Williams, Geophy. Res. Lett. 33, L21402 (2006) http://dx.doi.org/10.1029/2006GL027275[Crossref]
  • [21] M. B. Cardenas, D. T. Slottke, R. A. Ketcham, J. M. Sharp, Geophy. Res. Lett. 34, L14404 (2007) http://dx.doi.org/10.1029/2007GL030545[Crossref]
  • [22] P. Andersson et al., J. Contam. Hydrol. 70, 271 (2004) http://dx.doi.org/10.1016/j.jconhyd.2003.09.009[Crossref]
  • [23] A. Winberg, Final reports of the TRUE Block Scale project, 4. Synthesis of flow, transport and retention in the block scale, SKB Technical Report TR-02-16 (Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden, 2003)
  • [24] M. W. Becker, A. M. Shaprio, Water Resour. Res. 36, 1677 (2000) http://dx.doi.org/10.1029/2000WR900080[Crossref]
  • [25] A. M. Shapiro, Water Resour. Res. 37, 507 (2001) http://dx.doi.org/10.1029/2000WR900301[Crossref]
  • [26] R. Haggerty, S. W. Fleming, L. C. Meigs, S. A. McKenna, Water Resour. Res. 37, 1129 (2001) http://dx.doi.org/10.1029/2000WR900334[Crossref]
  • [27] L. C. Meigs, R. L. Baeuheim, Water Resour. Res. 37, 1113 (2001) http://dx.doi.org/10.1029/2000WR900335[Crossref]
  • [28] S. A. McKenna, P. C. Reeves, Fracture continuum approach to stochastic permeability modeling, Stochastic Modeling and Geostatistics: Principles, Methods and Case Studies (AAPG, Tulsa, OK, 2006)
  • [29] P. M. Adler, J. F. Thovert, Fractures and fracture networks, theories and applications of transport in porous media (Kluwer Academic Publishers, Norwell, MA, 1999) http://dx.doi.org/10.1007/978-94-017-1599-7[Crossref]
  • [30] X. Zhang, D. J. Sanderson, Numerical modeling and analysis of fluid flow and deformation of fractured rock masses (Elsevier Science, London, UK, 2002)
  • [31] F. W. Schwartz, L. Smith, Water Resour. Res. 24, 1360 (1988) http://dx.doi.org/10.1029/WR024i008p01360[Crossref]
  • [32] O. Huseby, J. F. Thovert, P. M. Adler, J. Phys. A-Math. Gen. 30, 1415 (1997) http://dx.doi.org/10.1088/0305-4470/30/5/012[Crossref]
  • [33] O. Huseby, J. F. Thovert, P. M. Adler, Phys. Fluids 13, 594 (2001) http://dx.doi.org/10.1063/1.1345718[Crossref]
  • [34] N. Koudina, R. Gonzalez Garcia, J. F. Thovert, Phys. Rev. E 57, 4466 (1998) http://dx.doi.org/10.1103/PhysRevE.57.4466[Crossref]
  • [35] V. Cvetkovic, S. Painter, N. Outters, J. O. Selroos, Water Resour. Res. 40, WR02404 (2004)
  • [36] K. Ando, A. Kostner, S. P. Neuman, Hydrogeol. J. 11, 521 (2003) http://dx.doi.org/10.1007/s10040-003-0286-0[Crossref]
  • [37] H. H. Liu, C. Haukwa, F. Ahlers, G. S. Bodvarsson, J. Contam. Hydro. 62, 176 (2003)
  • [38] A. Cortis, J. Birkholzer, Water Resour. Res. 44, W06414 (2008) http://dx.doi.org/10.1029/2007WR006596[Crossref]
  • [39] S. H. Lee, M. F. Lough, C. L. Jensen, Water Resour. Res. 37, 443 (2001) http://dx.doi.org/10.1029/2000WR900340[Crossref]
  • [40] P. W. Reimus, T. J. Callahan, Water Resour. Res. 43, W07421 (2007) http://dx.doi.org/10.1029/2006WR005746[Crossref]
  • [41] S. P. Neuman, V. Di Federico, Rev. Geophys. 41, 1014 (2003) http://dx.doi.org/10.1029/2003RG000130[Crossref]
  • [42] J. Öhman, A. Niemi, C. F. Tsang, Water Resour. Res. 41, W03016 (2005) http://dx.doi.org/10.1029/2004WR003498[Crossref]
  • [43] M. Odén, A. Niemi, C. F. Tsang, J. Öhman, Water Resour. Res. 44, W02421 (2008) http://dx.doi.org/10.1029/2006WR005632[Crossref]
  • [44] B. Berkowitz, H. Scher, Water Resour. Res. 31, 1461 (1995) http://dx.doi.org/10.1029/95WR00483[Crossref]
  • [45] B. Berkowitz, H. Scher, Phys. Rev. Lett. 79, 4038 (1997) http://dx.doi.org/10.1103/PhysRevLett.79.4038[Crossref]
  • [46] B. Berkowitz, H. Scher, Phys. Rev. E 57, 5858 (1998) http://dx.doi.org/10.1103/PhysRevE.57.5858[Crossref]
  • [47] S. P. Neuman, D. M. Tartakovsky, Adv. Water Resour. 32, 670 (2009) http://dx.doi.org/10.1016/j.advwatres.2008.08.005[Crossref]
  • [48] M. M. Meerschaert, Y. Zhang, B. Baeumer, Geophys. Res. Lett. 35, L17403 (2008) http://dx.doi.org/10.1029/2008GL034899[Crossref]
  • [49] R. N. Mantegna, H. E. Stanley, Phys. Rev. Lett. 73, 2946 (1994) http://dx.doi.org/10.1103/PhysRevLett.73.2946[Crossref]
  • [50] A. Cartea, D. del-Castillo-Negrete, Phys. Rev. E 76, 041105 (2007) http://dx.doi.org/10.1103/PhysRevE.76.041105[Crossref]
  • [51] Y. Zhang, D. A. Benson, M. M. Meerschaert, E. M. LaBolle, H. P. Scheffler, Phys. Rev. E 74, 026706 (2006) http://dx.doi.org/10.1103/PhysRevE.74.026706[Crossref]
  • [52] Y. Zhang, M. M. Meerschaert, B. Baeumer, Phys. Rev. E 78, 036705 (2008) http://dx.doi.org/10.1103/PhysRevE.78.036705[Crossref]
  • [53] R. Schumer, D. A. Benson, M. M. Meerschaert, B. Baeumer, Water Resour. Res. 39, W1296 (2003)
  • [54] Y. Zhang, C. Papelis, Phys. Rev. E 84, 066704 (2011) http://dx.doi.org/10.1103/PhysRevE.84.066704[Crossref]
  • [55] P. Reimus et al., Water Resour. Res. 39, 1356 (2003) http://dx.doi.org/10.1029/2002WR001597[Crossref]
  • [56] E. M. LaBolle, RWHet: Random Walk Particle Model for Simulating Transport in Heterogeneous Permeable Media, Version 3.2 User’s Manual and Program Documentation (University of California, Davis, CA, 2006)
  • [57] S. G. Samko, B. Ross, Integr. Transf. Spec. F. 1, 277 (1993) http://dx.doi.org/10.1080/10652469308819027[Crossref]
  • [58] A. V. Chechkin, R. Gorenflo, I. M. Sokolov, J. Phys. A-Math. Gen. 38, L679 (2005) http://dx.doi.org/10.1088/0305-4470/38/42/L03[Crossref]
  • [59] H. G. Sun, Y. Zhang, W. Chen, D. M. Reeves, J. Contam. Hydro. In review (2013)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0200-x
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.