Journal
Article title
Title variants
Languages of publication
Abstracts
In this paper we investigate the effects of external electric and magnetic fields on a three-dimensional harmonic oscillator with axial symmetry. The energy spectrum of such a system is non-degenerate due to the presence of the magnetic field. The degeneracy of the energy spectrum in the absence of a magnetic field is discussed. The influence of electric and magnetic fields, as well as the frequencies of the oscillator on the probability distribution function is analyzed. Optical transition probabilities are examined by deriving the selection rules in dipole approximation for the quantum numbers n
p, m
l and n
z. Employing stationary perturbation theory, the effects of deformations of the potential energy function on the oscillatory states are analyzed. Such models have been used in literature in analysis of spectra of axially symmetrical molecules and cylindrical quantum dots.
p, m
l and n
z. Employing stationary perturbation theory, the effects of deformations of the potential energy function on the oscillatory states are analyzed. Such models have been used in literature in analysis of spectra of axially symmetrical molecules and cylindrical quantum dots.
Journal
Year
Volume
Issue
Pages
412-422
Physical description
Dates
published
1 - 4 - 2013
online
22 - 5 - 2013
Contributors
author
- Institute of Physics, Faculty of Natural Sciences and Mathematics, Saints Cyril and Methodius University, 1000, Skopje, Macedonia, irina.petreska@pmf.ukim.mk
author
- Radiation Safety Directorate, Partizanski odredi 143, P.O. Box 22, 1020, Skopje, Macedonia
author
- Institute of Physics, Faculty of Natural Sciences and Mathematics, Saints Cyril and Methodius University, 1000, Skopje, Macedonia
author
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Saints Cyril and Methodius University, 1000, Skopje, Macedonia
References
- [1] M. Amirfakhrian, M. Hamzavi, Mol. Phys. 110, 2173 (2012) http://dx.doi.org/10.1080/00268976.2012.668227[Crossref]
- [2] A. Durmus, J. Phys. A: Math. Theor. 44, 155205 (2011) http://dx.doi.org/10.1088/1751-8113/44/15/155205[Crossref]
- [3] J. Zhou, H.-Y. Fan, J. Song, Int. J. Theor. Phys. 50, 3149 (2011) http://dx.doi.org/10.1007/s10773-011-0817-8[Crossref]
- [4] M. Aktas, Int. J. Theor. Phys. 48, 2154 (2009) http://dx.doi.org/10.1007/s10773-009-9993-1[Crossref]
- [5] G.-F. Wei, C.-Y. Long, Z.-W. Long, S.-J. Qin, Chinese Phys. C 32, 247 (2008) http://dx.doi.org/10.1088/1674-1137/32/4/001[Crossref]
- [6] S.M. Al-Jaber, Int. J. Theor. Phys. 47, 1853 (2008) http://dx.doi.org/10.1007/s10773-007-9630-9[Crossref]
- [7] W.C. Qiang, S.H. Dong, Phys. Scripta 70, 276 (2004) http://dx.doi.org/10.1088/0031-8949/70/5/002[Crossref]
- [8] M.-L. Liang, W.-Q. Zhang, Int. J. Theor. Phys. 42, 2881 (2003) http://dx.doi.org/10.1023/B:IJTP.0000006015.05376.6b[Crossref]
- [9] J. Main, M. Schwacke, G. Wunner, Phys. Rev. A 57, 1149 (1998) http://dx.doi.org/10.1103/PhysRevA.57.1149[Crossref]
- [10] L. F. Urrutia, C. Manterola, Int. J. Theor. Phys. 25, 75 (1986) http://dx.doi.org/10.1007/BF00669715[Crossref]
- [11] H. Ciftci, R.L. Hall, N. Saad, Cent. Eur. J. Phys. 11, 37 (2013) http://dx.doi.org/10.2478/s11534-012-0147-3[Crossref]
- [12] S.M. Ikhdair, R. Sever, Cent. Eur. J. Phys. 6, 697 (2008) http://dx.doi.org/10.2478/s11534-008-0060-y[Crossref]
- [13] X.-Y. Gu, J.-Q. Sun, J. Math. Phys. 51, 022106 (2010) http://dx.doi.org/10.1063/1.3290739[Crossref]
- [14] M.R. Pahlavani, S.A. Alavi, Commun. Theor. Phys. 58, 739 (2012) http://dx.doi.org/10.1088/0253-6102/58/5/19[Crossref]
- [15] B.J. Falaye, Cent. Eur. J. Phys. 10, 960 (2012) http://dx.doi.org/10.2478/s11534-012-0047-6[Crossref]
- [16] I. Petreska, Gj. Ivanovski, Lj. Pejov, Spectrochim. Acta A 66, 985 (2007) http://dx.doi.org/10.1016/j.saa.2006.05.010[Crossref]
- [17] T. Sandev, I. Petreska, Maced. J. Chem. Chem. En. (formerly Bull. Chem. Technol. Macedonia) 24, 143 (2005)
- [18] I. Petreska, T. Sandev, Gj. Ivanovski, Lj. Pejov, Commun. Theor. Phys. 54, 138 (2010) http://dx.doi.org/10.1088/0253-6102/54/1/26[Crossref]
- [19] A. Sommerfeld, Wave Mechanics (E.P. Dutton and Co. Inc., New York, 1930)
- [20] L. Pauling, E. Bright Wilson Jr, Introduction to Quantum Mechanics with Applications to Chemistry (The McGraw-Hill Book Co., New York, 1935)
- [21] L.D. Landau, E.M. Lifshitz, Quantum Mechanics (Pergamon Press, London, 1958)
- [22] V. Fock, Z. Phys. 47, 446 (1928) http://dx.doi.org/10.1007/BF01390750[Crossref]
- [23] S. M. Ikhadir, M. Hamzavi, R. Sever, Physica B 407, 4523 (2012) http://dx.doi.org/10.1016/j.physb.2012.08.013[Crossref]
- [24] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs and Mathematical Tables, eds. Applied Mathematics, Series 55 (National Bureau of Standards, Washington, 1964)
- [25] S. Flügge, Practical Quantum Mechanics (Springer-Verlag, Berlin, 1971) http://dx.doi.org/10.1007/978-3-642-61995-3[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0196-2