EN
In this article, we derive the coefficient set {H
m(x,y)}m=1∞ using the generating function ext+yϕ(t). When the complex function ϕ(t) is entire, using the inverse Mellin transform, and when ϕ(t) has singular points, using the inverse Laplace transform, the coefficient set is obtained. Also, bi-orthogonality of this set with its associated functions and its applications in the explicit solutions of partial fractional differential equations is discussed.