PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 11 | 6 | 863-867
Article title

About Maxwell’s equations on fractal subsets of ℝ3

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper we have generalized $$F^{\bar \xi }$$-calculus for fractals embedding in ℝ3. $$F^{\bar \xi }$$-calculus is a fractional local derivative on fractals. It is an algorithm which may be used for computer programs and is more applicable than using measure theory. In this Calculus staircase functions for fractals has important role. $$F^{\bar \xi }$$-fractional differential form is introduced such that it can help us to derive the physical equation. Furthermore, using the $$F^{\bar \xi }$$-fractional differential form of Maxwell’s equations on fractals has been suggested.
Publisher

Journal
Year
Volume
11
Issue
6
Pages
863-867
Physical description
Dates
published
1 - 6 - 2013
online
9 - 10 - 2013
Contributors
  • Departments of Physics, Urmia Branch, Islamic Azad University, P.O.BOX 969, Oromiyeh, Iran
References
  • [1] B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman and company, 1977)
  • [2] A. Bunde and S. Havlin (Eds), Fractal in Science (Springer, 1995)
  • [3] K. Falconer, The Geometry of fractal sets (Cambridge University Press, 1985) http://dx.doi.org/10.1017/CBO9780511623738[Crossref]
  • [4] K. Falconer, Fractal Geometry: Mathematical foundations and applications (John Wiley and Sons, 1990)
  • [5] K. Falconer, Techniques in Fractal Geometry (John Wiley and Sons, 1997)
  • [6] G.A.Edgar, Integral, Probability and Fractal Measures (Springer-Verlag, New York, 1998) http://dx.doi.org/10.1007/978-1-4757-2958-0[Crossref]
  • [7] K.M. Kolwankar, A.D. Gangal, Chaos 6, 505 (1996) http://dx.doi.org/10.1063/1.166197[Crossref]
  • [8] K.M. Kolwankar, A.D. Gangal, Paramana 48, 49 (1997) http://dx.doi.org/10.1007/BF02845622[Crossref]
  • [9] K.M. Kolwankar, A.D. Gangal, Phys. Rev. Lett. 80, 214 (1998) http://dx.doi.org/10.1103/PhysRevLett.80.214[Crossref]
  • [10] K.M. Kolwankar and A.D. Gangal, Local fractional calculus: a calculus for fractal space-time in fractals: Theory and Applications in Engineering, Eds. M. Dekking, J. Levy Vehel et al.(Springer, 1999)
  • [11] F.B. Adda, J. Cresson, J. Math. Anal. Appl. 263, 721 (2001) http://dx.doi.org/10.1006/jmaa.2001.7656[Crossref]
  • [12] A. Babakhani, V. Daftardar-Gejji, J. Math. Anal. Appl. 270, 66 (2002) http://dx.doi.org/10.1016/S0022-247X(02)00048-3[Crossref]
  • [13] K.B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, New York, 1974)
  • [14] D. Baleanu, A. K. Golmankhaneh, R. Nigmatullin, A. K. Golmankhaneh, Cent. Eur. J. Phys. 8, 120 (2010) http://dx.doi.org/10.2478/s11534-009-0085-x[Crossref]
  • [15] D. Baleanu, A. K. Golmankhaneh, Ali K. Golmankhaneh, R. R. Nigmatullin, Nonlinear Dynam. 60, 81 (2010) http://dx.doi.org/10.1007/s11071-009-9581-1[Crossref]
  • [16] E. Lutz, Phys. Rev. E 64, 051106 (2001) http://dx.doi.org/10.1103/PhysRevE.64.051106[Crossref]
  • [17] A Rocco, B.J. West, Physica A 265, 535 (1999) http://dx.doi.org/10.1016/S0378-4371(98)00550-0[Crossref]
  • [18] M.T. Barlow, Diffusion on Fractals Lecture notes Math. Vol. 1690 (Springer, 1998)
  • [19] R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000) http://dx.doi.org/10.1016/S0370-1573(00)00070-3[Crossref]
  • [20] G.M. Zaslavsky, Phys. Rep. 371, 461 (2002) http://dx.doi.org/10.1016/S0370-1573(02)00331-9[Crossref]
  • [21] R. Hilfer, J. Phys. Chem. B 104, 3914 (2000) http://dx.doi.org/10.1021/jp9936289[Crossref]
  • [22] G.M. Zaslavsky, Physica D 76, 110 (1994) http://dx.doi.org/10.1016/0167-2789(94)90254-2[Crossref]
  • [23] A. Compts, Phys. Rev. E 53, 4191 (1996) http://dx.doi.org/10.1103/PhysRevE.53.4191[Crossref]
  • [24] R. Hilfer, L. Anton, Phys. Rev. E 51, 848 (1995) http://dx.doi.org/10.1103/PhysRevE.51.R848[Crossref]
  • [25] R. Hilfer, Application of fractional Calculus in physics (World Scientific Publishing Co., Singapore, 2000) http://dx.doi.org/10.1142/9789812817747[Crossref]
  • [26] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (John Wiley, New York, 1993)
  • [27] S.G. Samko A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivative-Theory and Applications (Gordon and Breach Science Publishers, 1993)
  • [28] R. Metzler, E Barkai, J. Klafter, Phys. Rev. Lett. 83, 3563 (1999) http://dx.doi.org/10.1103/PhysRevLett.82.3563[Crossref]
  • [29] R. Metzler, W.G. Glöckle, T.F. Nonnenmacher, Physica A 211, 13 (1994) http://dx.doi.org/10.1016/0378-4371(94)90064-7[Crossref]
  • [30] U. Freiberg, M. Zähle, Harmonic calculus on fractalsa measure geometric approach II, Preprint (2000)
  • [31] K. Dalrymple R.S. Strichartz, J. P. Vinson, J.Fourier Anal. Appl. 5, 205 (1999) http://dx.doi.org/10.1007/BF01261610[Crossref]
  • [32] J. Kigami, Analysis on Fractals (Cambrigde University Press, 2000)
  • [33] U. Freiberg, Math. Nachr. 260, 34 (2003) http://dx.doi.org/10.1002/mana.200310102[Crossref]
  • [34] R.S. Strichartz, J. Funct. Anal. 174, 76 (2000) http://dx.doi.org/10.1006/jfan.2000.3580[Crossref]
  • [35] R.S. Strichartz, Differential Equations of fractals (Princeton University Press, New Jersey, 2006)
  • [36] A.K. Golmankhaneh, Investigation in dynamics: With focus on fractional dynamics and application to classical and quantum mechanical processes, (Ph.D. Thesis, submitted to University of Pune, Inida 2010)
  • [37] A.K. Golmankhaneh, V. Fazlollahi, D. Baleanu, Rom. Rep. Phys. 65, (2013)
  • [38] A. Parvate, A.D. Gangal, Fractals 17, 53 (2009) http://dx.doi.org/10.1142/S0218348X09004181[Crossref]
  • [39] J.A. Tenreiro Machado, Alexandra M.S.F. Galhano, Nonlinear Dynam. 68, 107 (2012) http://dx.doi.org/10.1007/s11071-011-0207-z[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-013-0192-6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.