Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 11 | 4 | 474-479

Article title

First (fuzzy) Hopf map from irreps of SU(2)

Content

Title variants

Languages of publication

EN

Abstracts

EN
Using the spherical basis of the spin-ν operator, together with an appropriate normalized complex (2ν +1)-spinor on S
3 we obtain spin-ν representation of the U(1) Hopf fibration S
3 → S
2 as well as its associated fuzzy version. Also, to realize the first Hopf map via the spherical basis of the spin-1 operator with even winding numbers, we present an appropriate normalized complex three-spinor. We put the winding numbers in one-to-one correspondence with the monopole charges corresponding to different associated complex vector bundles.

Publisher

Journal

Year

Volume

11

Issue

4

Pages

474-479

Physical description

Dates

published
1 - 4 - 2013
online
22 - 5 - 2013

Contributors

  • Department of Theoretical Physics and Astrophysics, Faculty of Physics, University of Tabriz, P. O. Box 51666-16471, Tabriz, Iran
  • Department of Physics, Faculty of Science, Urmia University, P. O. Box 165, Urmia, Iran

References

  • [1] M. F. Atiyah, Geometry of the Yang-Mills Fields (Accademia Nazionale dei Lincei, Scuola Normale Superiore, Pisa, 1979)
  • [2] L. H. Ryder, J. Phys. A-Math. Gen. 13, 437 (1980) http://dx.doi.org/10.1088/0305-4470/13/2/012[Crossref]
  • [3] H. K. Urbantke, J. Geom. Phys. 46, 125 (2003) http://dx.doi.org/10.1016/S0393-0440(02)00121-3[Crossref]
  • [4] A. Nersessian, Lect. Notes Phys. 698, 139 (2006) http://dx.doi.org/10.1007/3-540-33314-2_4[Crossref]
  • [5] R. Mosseri, R. Dandoloff, J. Phys. A-Math. Gen. 34, 10243 (2001) http://dx.doi.org/10.1088/0305-4470/34/47/324[Crossref]
  • [6] I. Bengtsson, K. Zyczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, Cambridge, 2006) http://dx.doi.org/10.1017/CBO9780511535048[Crossref]
  • [7] J. E. Marsden, T. S. Ratiu, Introduction to Mechanics and Symmetry (Springer, New York, 1999) http://dx.doi.org/10.1007/978-0-387-21792-5[Crossref]
  • [8] Z. Mouayn, J. Geom. Phys. 59, 256 (2009) http://dx.doi.org/10.1016/j.geomphys.2008.11.006[Crossref]
  • [9] K. Hasebe, SIGMA 6, 071 (2010)
  • [10] K. Hasebe, Nucl. Phys. B 853, 777 (2011) http://dx.doi.org/10.1016/j.nuclphysb.2011.08.013[Crossref]
  • [11] H. Grosse, C. W. Rupp, A. Strohmaier, J. Geom. Phys. 42, 54 (2002) http://dx.doi.org/10.1016/S0393-0440(01)00072-9[Crossref]
  • [12] A. Dehghani, H. Fakhri, A. Hashemi, M. Lotfizadeh, B. Mojaveri, Mod. Phys. Lett. A 26, 2973 (2011) http://dx.doi.org/10.1142/S0217732311037236[Crossref]
  • [13] U. Carow-Watamura, S. Watamura, Commun. Math. Phys. 183, 365 (1997) http://dx.doi.org/10.1007/BF02506411[Crossref]
  • [14] U. Carow-Watamura, S. Watamura, Commun. Math. Phys. 212, 395 (2000) http://dx.doi.org/10.1007/s002200000213[Crossref]
  • [15] G. Landi, J. Geom. Phys. 37, 47 (2001) http://dx.doi.org/10.1016/S0393-0440(00)00032-2[Crossref]
  • [16] P. Valtancoli, Mod. Phys. Lett. A 16, 639 (2001) http://dx.doi.org/10.1142/S0217732301003851[Crossref]
  • [17] A. P. Balachandran, S. Kürkcüoglu, S. Vaidya, Lectures on Fuzzy and Fuzzy SUSY Physics (World Scientific, Singapore, 2007) http://dx.doi.org/10.1142/9789812707468[Crossref]
  • [18] A. P. Balachandran, S. Vaidya, Int. J. Mod. Phys. A 16, 17 (2001)
  • [19] S. Baez, A. P. Balachandran, S. Vaidya, B. Ydri, Commun. Math. Phys. 208, 787 (2000) http://dx.doi.org/10.1007/s002200050011[Crossref]
  • [20] A. P. Balachandran, P. Padmanabhan, J. High Energy Phys. 9, 120 (2009) http://dx.doi.org/10.1088/1126-6708/2009/09/120[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-013-0178-4
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.