Preferences help
enabled [disable] Abstract
Number of results
2013 | 11 | 9 | 1141-1148
Article title

Ab initio studies of two pyrimidine derivatives as possible photo-switch systems

Title variants
Languages of publication
The six lowest lying electronic singlet states of 8-(pyrimidine-2-yl)quinolin-ol and 2-(4-nitropyrimidine-2-yl)ethenol have been studied theoretically using the complete active space self-consistent-field (CASSCF) and M’ller-Plesset second-order perturbation theory (MP2) methods. Both molecules can be viewed as consisting of a frame and a crane component. As a possible mechanism for the excited-state relaxation process an intramolecular hydrogen transfer promoted by twisting around the covalent bond connecting the molecular frame and crane moieties has been considered. Based on this idea we have attempted to derive abstracted photochemical pathways for both systems. Geometry optimizations for the construction of hypothetical reaction coordinates have been performed at the MP2 level of theory while the CASSCF approach has been employed for the calculation of vertical excitation energies along the pathways. The results of the calculations along the specific twisting displacements investigated in this study do not support the notion of substantial twisting activity upon excitation of any of the five excited states at the planar terminal structures of the torsion coordinates of both molecules. However, the present analysis should be considered only as a first, preliminary step towards an understanding of the photochemistry of the two candidate compounds. For example, we have not performed any excited state geometry optimizations so far and the estimates of vertical excitation energies do not take dynamical electron correlation into account. Further work on this subject is in progress.
Physical description
1 - 9 - 2013
24 - 11 - 2013
  • Department of Information Technology, University of Debrecen, H-4010, Debrecen, PO Box 12, Hungary
  • Centre for Theoretical and Computational Chemistry, Chemistry Department, University of Tromsø, N-9037, Tromsø, Norway
  • Department of Information Technology, University of Debrecen, H-4010, Debrecen, PO Box 12, Hungary
  • Department of Theoretical Physics, University of Debrecen, H-4010, Debrecen, PO Box 5, Hungary
  • [1] M. Born, R. Oppenheimer, Ann. Phys. 84, 457 (1927)[Crossref]
  • [2] M. Born, K. Huang, The Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford, 1954)
  • [3] H. Köppel, W. Domcke, L. S. Cederbaum, Adv. Chem. Phys. 57, 59 (1984)[Crossref]
  • [4] M. Baer, G. D. Billing, The Role of Degenerate States in Chemistry (Wiley-Interscience, New York, 2002)[Crossref]
  • [5] W. Domcke, D. R. Yarkony, H. Köppel, Conical Intersections: Electronic Structure, Dynamics and Spectroscopy (World Scientific, Singapore, 2004)
  • [6] G. A. Worth, L. S. Cederbaum, Annu. Rev. Phys. Chem. 55, 127 (2004)[Crossref]
  • [7] M. Baer, Beyond Born Oppenheimer: Electronic Non-Adiabatic Coupling Terms and Conical Intersections (Wiley: Hoboken, New Jersey, 2006)[Crossref]
  • [8] S. Matsika, Rev. Comp. Ch. 23, 83 (2007)[Crossref]
  • [9] M. Klessinger, J. Michl, Excited States and Photochemistry of Organic Molecules (VCH Publishers Inc., New York, 1995)
  • [10] P. Kukura et al., Science 310, 1006 (2005)[Crossref]
  • [11] S. Hahn, G.J. Stock, J. Phys. Chem. B 104, 1146 (2000)[Crossref]
  • [12] T. Schultz et al., Science 306, 1765 (2004)[Crossref]
  • [13] Z. Lan, L. M. Frutos, A. L. Sobolewski, W. Domcke, P. Natl. Acad. Sci. USA 105, 12707 (2008)[Crossref]
  • [14] T. Andruniow, N. Ferre, M. Olivucci, P. Natl. Acad. Sci. USA 101, 17908 (2004)[Crossref]
  • [15] A. L. Sobolewski, Phys. Chem. Chem. Phys. 10, 1243 (2008)[Crossref]
  • [16] A. Aviram, M. A. Ratner, Chem. Phys. Lett. 29, 277 (1974)[Crossref]
  • [17] J. Chen, M. A. Reed, A. M. Rawlett, J. M. Tour, Science 286, 1550 (1999)[Crossref]
  • [18] Z. Yao, H. W. C. Postman, L. Balents, C. Dekker, Nature 406, 273 (1999)
  • [19] B. L. Feringa, Molecular Switches (Wiley-VCH Verlag GmbH, Chichester, 2001)[Crossref]
  • [20] P. R. Hania et al., J. Phys. Chem. A 106, 8498 (2002)[Crossref]
  • [21] D. Guillaumont et al., J. Phys. Chem. A 106, 7222 (2002)[Crossref]
  • [22] D. Dulic et al., Phys. Rev. Lett. 91, 207402 (2003)[Crossref]
  • [23] J. Li, G. Speyer, O. Sankey, Phys. Rev. Lett. 93, 248302 (2004)[Crossref]
  • [24] M. Zhuang, M. Ernzerhof, Phys. Rev. B 72, 073104 (2005)[Crossref]
  • [25] C. J. Barrett, J. Mamiya, K. G. Yagerc, T. Ikeda, Soft Matter 3, 1249 (2007)[Crossref]
  • [26] H. Tamura, S. Nanbu, T. Ishida, H. Nakamura, J. Chem. Phys. 125, 034307 (2006)[Crossref]
  • [27] L. Lapinski, M. J. Nowak, J. Nowacki, M. F. Rode, A. L. Sobolewski, ChemPhysChem 10, 2290 (2009)[Crossref]
  • [28] M. F. Rode, A. L. Sobolewski, J. Phys. Chem. A 114, 11879 (2010)[Crossref]
  • [29] G. Schaftenaar, J. H. Noordik, J. Comput. Aid. Mol. Des. 14, 123 (2000)[Crossref]
  • [30] T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989)[Crossref]
  • [31] C. M’ller, M. S. Plesset, Phys. Rev. 46, 618 (1934)[Crossref]
  • [32] B. H. Lengsfield III, D. R. Yarkony, Adv. Chem. Phys. 82, 1 (1992)
  • [33] B. O. Roos, Adv. Chem. Phys. 69, 399 (1987)[Crossref]
  • [34] B. O. Roos, P. R. Taylor, P. E. M. Siegbahn, Chem. Phys. 48, 157 (1980)[Crossref]
  • [35] H. J. Werner, Adv. Chem. Phys. 69, 1 (1987)
  • [36] K. Ruedenberg, M. W. Schmidt, M. M. Gilbert, S. T. Elbert, Chem. Phys. 71, 41 (1982)[Crossref]
  • [37] A. Bergner, M. Dolg, W. Kuechle, H. Stoll, H. Preuss, Mol. Phys. 80, 1431 (1993)[Crossref]
  • [38] C. Woywod, A. Csehi, G. J. Halász, K. Ruud, Á. Vibók (submitted to Chem. Phys.)
  • [39] A. Csehi, Á. Vibók, G. J. Halász, K. Ruud, C. Woywod (to be published)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.