PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 11 | 3 | 296-316
Article title

On the geometry of the space-time and motion of the spinning bodies

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper an alternative theory about space-time is given. First some preliminaries about 3-dimensional time and the reasons for its introduction are presented. Alongside the 3-dimensional space (S) the 3-dimensional space of spatial rotations (SR) is considered independently from the 3-dimensional space. Then it is given a model of the universe, based on the Lie groups of real and complex orthogonal 3 × 3 matrices in this 3+3+3-dimensional space. Special attention is dedicated for introduction and study of the space S × SR, which appears to be isomorphic to SO(3,ℝ) × SO(3,ℝ) or S
3 × S
3. The influence of the gravitational acceleration to the spinning bodies is considered. Some important applications of these results about spinning bodies are given, which naturally lead to violation of Newton’s third law in its classical formulation. The precession of the spinning axis is also considered.
Keywords
Publisher

Journal
Year
Volume
11
Issue
3
Pages
296-316
Physical description
Dates
published
1 - 3 - 2013
online
28 - 3 - 2013
Contributors
  • Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, P.O.Box 162, Skopje, Macedonia, kostatre@pmf.ukim.mk
References
  • [1] C. M. Will, Theory and Experiment in Gravitational Physics (Cambridge Univ. Press, New York, 1993) http://dx.doi.org/10.1017/CBO9780511564246[Crossref]
  • [2] K. Trencevski, E. G. Celakoska, Cent. Eur. J. Phys. 9, 654 (2011) http://dx.doi.org/10.2478/s11534-010-0102-0[Crossref]
  • [3] C. W. F. Everitt et al., Phys. Rev. Lett. 106, 221101 (2011) http://dx.doi.org/10.1103/PhysRevLett.106.221101[Crossref]
  • [4] K. Trencevski, E. G. Celakoska, V. Balan, Int. J. Theor. Phys. 50, 1 (2011) http://dx.doi.org/10.1007/s10773-010-0488-x[Crossref]
  • [5] K. Trencevski, Tensor 53, 70 (1993)
  • [6] K. Trencevski, Tensor 72, 32 (2010)
  • [7] K. Trencevski, Kragujevac Journal of Mathematics 35, 327 (2011)
  • [8] K. Trencevski, Mathematica Balkanica 25, 193 (2011)
  • [9] A. P. Yefremov, Acta Phys. Hung. N.S.-H. 11, 147 (2000)
  • [10] D. G. Pavlov, In: D. G. Pavlov, G. Atanasiu, V. Balan (Eds.), Space-Time Structure. Algebra and Geometry (Russian Hypercomplex Society, Moscow, 2007) 32
  • [11] V. S. Barashenkov, Turkish Journal of Physics 23, 831 (1999)
  • [12] V. S. Barashenkov, Particles and Nuclei 2, 54 (2004)
  • [13] V. S. Barashenkov, M. Z. Yuriev, Particles and Nuclei 6, 388 (2002)
  • [14] E. A. B. Cole, J. Phys. A-Math. Gen. 13, 109 (1980) http://dx.doi.org/10.1088/0305-4470/13/1/012[Crossref]
  • [15] A. J. R. Franco, Electronic Journal of Theoretical Physics 9, 35 (2006)
  • [16] H. Kitada, Nuovo Ciment. B 109, 281 (1994) http://dx.doi.org/10.1007/BF02727290[Crossref]
  • [17] J. Strnad, J. Phys. A-Math. Gen. 14, 433 (1981) http://dx.doi.org/10.1088/0305-4470/14/11/003[Crossref]
  • [18] J. Strnad, Phys. Lett. A 96, 371 (1983) http://dx.doi.org/10.1016/0375-9601(83)90339-0[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-012-0167-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.