Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 11 | 2 | 162-172

Article title

On the rotational dynamics of the rattleback

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
The rattleback is a very popular science toy shown to students all over the world to demonstrate the nontriviality of rotational motion. When spun on a horizontal table, this boat-shaped object behaves in a peculiar way. Although the object appears symmetric, the dynamics of its motion seem very asymmetric. When spun in the preferred direction, it spins smoothly, whereas in the other direction it starts to oscillate wildly. The oscillation soon dies out and the rattleback starts to spin in the preferred way. We will construct and go through an analytical model capable of explaining this behaviour in a simple and intelligible way. Although we aim at a semi-pedagogical treatise, we will study the details only when they are necessary to understand the calculation. After presenting the calculations we will discuss the physical validity of our assumptions and take a look at more sophisticated models requiring numerical analysis. We will then improve our model by assuming a simple friction force.

Keywords

Publisher

Journal

Year

Volume

11

Issue

2

Pages

162-172

Physical description

Dates

published
1 - 2 - 2013
online
9 - 2 - 2013

References

  • [1] L. Franti, Bachelor’s thesis, University of Helsinki (Helsinki, 2009)
  • [2] H. Bondi, Proc. R. Soc. Lon. Ser.-A 405, 265 (1986) http://dx.doi.org/10.1098/rspa.1986.0052[Crossref]
  • [3] A. Garcia, M. Hubbard, Proc. R. Soc. Lon. Ser.-A 418, 165 (1988) http://dx.doi.org/10.1098/rspa.1988.0078[Crossref]
  • [4] R. E. Lindberg, R. W. Longman, Acta Mech. 49, 81 (1983) http://dx.doi.org/10.1007/BF01181756[Crossref]
  • [5] A. V. Borisov, A. A. Kilin, I. S. Mamaev, Dokl. Phys. 51, 272 (2006) http://dx.doi.org/10.1134/S1028335806050107[Crossref]
  • [6] A. V. Borisov, I. S. Mamaev, Phys.-Usp.+ 46, 393 (2003) http://dx.doi.org/10.1070/PU2003v046n04ABEH001306[Crossref]
  • [7] H. R. Dullin, A. V. Tsygvintsev, arXiv:math/0610305v1 [math.DS]
  • [8] A. D. Blackowiak, R. H. Rand, H. Kaplan, Proceedings of ASME design Engineering Technical Conferences (ASME, Sacramento, CA, 1997)
  • [9] A. P. Markeev, Regul. Chaotic Dyn. 7, 153 (2002) http://dx.doi.org/10.1070/RD2002v007n02ABEH000202[Crossref]
  • [10] M. Pascal, J. Appl. Math. Mech.-USS 47, 269 (1983) http://dx.doi.org/10.1016/0021-8928(83)90016-3[Crossref]
  • [11] H. K. Moffatt, T. Tokieda, P. Roy. Soc. Edinb. A 138, 361 (2008)
  • [12] G. Walker, The Quarterly Journal of Pure and Applied Mathematics 28, 175 (1896)
  • [13] K. Magnus, Theorie und Praxis der Ingenieurwissenschaften 19 (1971) [WoS]
  • [14] K. Magnus, Z. Angew. Math. Mech. 54, 54 (1974) http://dx.doi.org/10.1002/zamm.19740541215[Crossref]
  • [15] T. K. Caughey, Int. J. Nonlin. Mech. 15, 293 (1980) http://dx.doi.org/10.1016/0020-7462(80)90014-1[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-012-0161-5
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.