PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 11 | 2 | 162-172
Article title

On the rotational dynamics of the rattleback

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
The rattleback is a very popular science toy shown to students all over the world to demonstrate the nontriviality of rotational motion. When spun on a horizontal table, this boat-shaped object behaves in a peculiar way. Although the object appears symmetric, the dynamics of its motion seem very asymmetric. When spun in the preferred direction, it spins smoothly, whereas in the other direction it starts to oscillate wildly. The oscillation soon dies out and the rattleback starts to spin in the preferred way. We will construct and go through an analytical model capable of explaining this behaviour in a simple and intelligible way. Although we aim at a semi-pedagogical treatise, we will study the details only when they are necessary to understand the calculation. After presenting the calculations we will discuss the physical validity of our assumptions and take a look at more sophisticated models requiring numerical analysis. We will then improve our model by assuming a simple friction force.
Keywords
Publisher

Journal
Year
Volume
11
Issue
2
Pages
162-172
Physical description
Dates
published
1 - 2 - 2013
online
9 - 2 - 2013
References
  • [1] L. Franti, Bachelor’s thesis, University of Helsinki (Helsinki, 2009)
  • [2] H. Bondi, Proc. R. Soc. Lon. Ser.-A 405, 265 (1986) http://dx.doi.org/10.1098/rspa.1986.0052[Crossref]
  • [3] A. Garcia, M. Hubbard, Proc. R. Soc. Lon. Ser.-A 418, 165 (1988) http://dx.doi.org/10.1098/rspa.1988.0078[Crossref]
  • [4] R. E. Lindberg, R. W. Longman, Acta Mech. 49, 81 (1983) http://dx.doi.org/10.1007/BF01181756[Crossref]
  • [5] A. V. Borisov, A. A. Kilin, I. S. Mamaev, Dokl. Phys. 51, 272 (2006) http://dx.doi.org/10.1134/S1028335806050107[Crossref]
  • [6] A. V. Borisov, I. S. Mamaev, Phys.-Usp.+ 46, 393 (2003) http://dx.doi.org/10.1070/PU2003v046n04ABEH001306[Crossref]
  • [7] H. R. Dullin, A. V. Tsygvintsev, arXiv:math/0610305v1 [math.DS]
  • [8] A. D. Blackowiak, R. H. Rand, H. Kaplan, Proceedings of ASME design Engineering Technical Conferences (ASME, Sacramento, CA, 1997)
  • [9] A. P. Markeev, Regul. Chaotic Dyn. 7, 153 (2002) http://dx.doi.org/10.1070/RD2002v007n02ABEH000202[Crossref]
  • [10] M. Pascal, J. Appl. Math. Mech.-USS 47, 269 (1983) http://dx.doi.org/10.1016/0021-8928(83)90016-3[Crossref]
  • [11] H. K. Moffatt, T. Tokieda, P. Roy. Soc. Edinb. A 138, 361 (2008)
  • [12] G. Walker, The Quarterly Journal of Pure and Applied Mathematics 28, 175 (1896)
  • [13] K. Magnus, Theorie und Praxis der Ingenieurwissenschaften 19 (1971) [WoS]
  • [14] K. Magnus, Z. Angew. Math. Mech. 54, 54 (1974) http://dx.doi.org/10.1002/zamm.19740541215[Crossref]
  • [15] T. K. Caughey, Int. J. Nonlin. Mech. 15, 293 (1980) http://dx.doi.org/10.1016/0020-7462(80)90014-1[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-012-0161-5
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.