PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 11 | 1 | 1-36
Article title

Symmetric M-theory backgrounds

Content
Title variants
Languages of publication
EN
Abstracts
EN
We classify symmetric backgrounds of eleven-dimensional supergravity up to local isometry. In other words, we classify triples (M, g, F), where (M,g) is an eleven-dimensional lorentzian locally symmetric space and F is an invariant 4-form, satisfying the equations of motion of eleven-dimensional supergravity. The possible (M,g) are given either by (not necessarily nondegenerate) Cahen-Wallach spaces or by products AdSd × M11−d for 2 ⩽ d ⩽ 7 and M11−d a not necessarily irreducible riemannian symmetric space. In most cases we determine the corresponding F-moduli spaces.
Publisher

Journal
Year
Volume
11
Issue
1
Pages
1-36
Physical description
Dates
published
1 - 1 - 2013
online
15 - 1 - 2013
Contributors
  • Maxwell and Tait Institutes, School of Mathematics, The University of Edinburgh, King’s Buildings, Edinburgh, EH9 3JZ, Scotland, UK, j.m.figueroa@ed.ac.uk
References
  • [1] J.M. Figueroa-O’Farrill, P. Meessen, S. Philip, Classical Quant. Grav. 22, 207 (2005) http://dx.doi.org/10.1088/0264-9381/22/1/014[Crossref]
  • [2] J.M. Figueroa-O’Farrill, E. Hackett-Jones, G. Moutsopoulos, Classical Quant. Grav. 24, 3291 (2007) http://dx.doi.org/10.1088/0264-9381/24/13/010[Crossref]
  • [3] J. Figueroa-O’Farrill, N. Hustler, J. High Energy Phys. 10, 14 (2012) http://dx.doi.org/10.1007/JHEP10(2012)014[Crossref]
  • [4] S. Helgason, Differential geometry, Lie groups, and symmetric spaces (Academic Press, San Diego, 1978)
  • [5] M. Cahen, N. Wallach, B. Am. Math. Soc. 76, 585 (1970) http://dx.doi.org/10.1090/S0002-9904-1970-12448-X[Crossref]
  • [6] M. Cahen, M. Parker, Ann. I. Fourier 27, 251 (1977) http://dx.doi.org/10.5802/aif.648[Crossref]
  • [7] M. Duff, K. Stelle, Phys. Lett. B 253, 113 (1991) http://dx.doi.org/10.1016/0370-2693(91)91371-2[Crossref]
  • [8] M. Duff, B. Nilsson, C. Pope, Phys. Rep. 130, 1 (1986) http://dx.doi.org/10.1016/0370-1573(86)90163-8[Crossref]
  • [9] A.L. Besse, Einstein Manifolds (Springer-Verlag, Berlin, 1987)
  • [10] J.M. Figueroa-O’Farrill, G. Papadopoulos, J. High Energy Phys. 6, 36 (2001) http://dx.doi.org/10.1088/1126-6708/2001/08/036[Crossref]
  • [11] M. Blau, J.M. Figueroa-O’Farrill, G. Papadopoulos, Classical Quant. Grav. 19, 4753 (2002) http://dx.doi.org/10.1088/0264-9381/19/18/310[Crossref]
  • [12] J.P. Gauntlett, C.M. Hull, J. High Energy Phys. 6, 13 (2002) http://dx.doi.org/10.1088/1126-6708/2002/06/013[Crossref]
  • [13] J. Michelson, Classical Quant. Grav. 19, 5935 (2002) http://dx.doi.org/10.1088/0264-9381/19/23/304[Crossref]
  • [14] R. Geroch, Commun. Math. Phys. 13, 180 (1969) http://dx.doi.org/10.1007/BF01645486[Crossref]
  • [15] S. Philip, J. Geom. Phys. 56, 1516 (2006) http://dx.doi.org/10.1016/j.geomphys.2005.08.002[Crossref]
  • [16] J.M. Figueroa-O’Farrill, P. Meessen, S. Philip, J. High Energy Phys. 5, 50 (2005) http://dx.doi.org/10.1088/1126-6708/2005/05/050[Crossref]
  • [17] L. Castellani, L. Romans, N. Warner, Nucl. Phys. B 241, 429 (1984) http://dx.doi.org/10.1016/0550-3213(84)90055-5[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-012-0160-6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.