Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 11 | 2 | 213-218

Article title

Characterization of CaTi0.9Fe0.1O3/La0.98Mg0.02NbO4 composite

Content

Title variants

Languages of publication

EN

Abstracts

EN
A composite of CaTi0.9Fe0.1O3 and electrolyte material, i.e. magnesium doped La0.98Mg0.02NbO4 was prepared and studied. The phase content and the sample microstructure was examined by an X-ray diffraction method and scanning electron microscopy. EDS measurements were done both for composite samples and the diffusion couple. The electrical properties were studied by four terminal DC method. The high-temperature interaction between the two components of the composite has been observed. It has been suggested that lanthanum diffused into the perovskite phase and substituted for calcium whereas calcium and niobium formed the Ca2Nb2O7 pyrochlore phase. At 1500°C very large crystallites of the pyrochlore were observed. Regardless of strong interaction between the composite components, its total conductivity was weakly dependent on the sintering temperature.

Publisher

Journal

Year

Volume

11

Issue

2

Pages

213-218

Physical description

Dates

published
1 - 2 - 2013
online
9 - 2 - 2013

Contributors

  • Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
author
  • Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
  • Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
  • Faculty of Electronics, Telecommunication and Informatics, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
author
  • The Szewalski Institute of Fluid Flow Machinery, Polish Academy of Science, Fiszera 14, 80-231, Gdansk, Poland
author
  • Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
author
  • Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland

References

  • [1] L. Cindrella et al., J. Power Sources 194, 146 (2009) http://dx.doi.org/10.1016/j.jpowsour.2009.04.005[Crossref]
  • [2] J.E. Elshof, H.J.M. Bouwmeester, H. Verweij, Appl. Catal. A-Gen. 30, 195 (1995) http://dx.doi.org/10.1016/0926-860X(95)00098-4[Crossref]
  • [3] S.M. Haile, Acta Mater. 51, 5981 (2003) http://dx.doi.org/10.1016/j.actamat.2003.08.004[Crossref]
  • [4] A. Magraso et al., Fuel Cells 11, 17 (2011) http://dx.doi.org/10.1002/fuce.201000052[Crossref]
  • [5] F.M. Figueiredo, V.V. Kharton, J.C. Waerenborgh, A.P. Viskup, E.N. Naumovich, J.R. Frade, J. Am. Ceram. Soc. 87, 2252 (2004) http://dx.doi.org/10.1111/j.1151-2916.2004.tb07501.x[Crossref]
  • [6] L.A. Donyushkina, A.K. Demin, B.V. Zhuravlev, Solid State Ionics 116, 85 (1999) http://dx.doi.org/10.1016/S0167-2738(98)00197-0[Crossref]
  • [7] F.M. Figueiredo, V.V. Kharton, A.P. Viskup, J.R. Frade, J. Membrane Sci. 236, 73 (2004) http://dx.doi.org/10.1016/j.memsci.2004.02.008[Crossref]
  • [8] T. Mokkelbost, H.L. Lein, P.E. Vullum, R. Holmestad, T. Grande, M.-A. Einarsrud, Ceram. Int. 35, 2877 (2009) http://dx.doi.org/10.1016/j.ceramint.2009.03.041[Crossref]
  • [9] L.A. Dunyushkina, A.V. Kuzmin, V.B. Balakireva, V.P. Gorelov, Russ. J. Electrochem+. 42, 375 (2006) http://dx.doi.org/10.1134/S1023193506040148[Crossref]
  • [10] T. Lendze A. Mielewczyk-Gryn, K. Gdula, B. Kusz, M. Gazda, Advances in Materials Sciences 1, 55 (2011)
  • [11] A. Mielewczyk-Gryn, K. Gdula, T. Lendze, B. Kusz, M. Gazda, Cryst. Res. Technol. 12, 1225 (2010) http://dx.doi.org/10.1002/crat.201000378[Crossref]
  • [12] X. Liu, R.C. Liebermann, Phys. Chem. Miner. 20, 171 (1993) http://dx.doi.org/10.1007/BF00200119[Crossref]
  • [13] S. Tsunekawa, T. Kamiyama, K. Sasaki, H. Asano, T. Fakuda, Acta Crystallogr. A 49, 595 (1993) http://dx.doi.org/10.1107/S0108767392013035[Crossref]
  • [14] J.T. Lewandowski, I.J. Pickering, Mater. Res. Bull. 27, 981 (1992) http://dx.doi.org/10.1016/0025-5408(92)90199-A[Crossref]
  • [15] D.A.G. Bruggeman, Ann. Phys.-Berlin 416, 636 (1935) http://dx.doi.org/10.1002/andp.19354160705[Crossref]
  • [16] V. Vashook, L. Vasylechko, M. Knapp, H. Ullmann, U. Guth, J. Alloy. Compd. 354, 13 (2003) http://dx.doi.org/10.1016/S0925-8388(02)01345-2[Crossref]
  • [17] R.S. Roth et al., J. Solid State Chem. 181, 406 (2008) http://dx.doi.org/10.1016/j.jssc.2007.12.005[Crossref]
  • [18] M. Baurer, S.-J. Shih, C. Bishop, M.P. Harmer, D. Cockayne, M.J. Hoffmann, Acta Mater. 58, 290 (2010) http://dx.doi.org/10.1016/j.actamat.2009.09.007[Crossref]
  • [19] S.H. Yoon, Y.-S. Park, J.-Oh Hong, D.-S. Sinn, J. Mater. Res. 22, 2539 (2007) http://dx.doi.org/10.1557/jmr.2007.0326[Crossref]
  • [20] S.C. Hopkins, Ph.D. thesis, Sidney Sussex College, (Cambridge, United Kingdom, 2007)
  • [21] P.A. Miles, W.B. Westphal, V.A. Hippel, Rev. Mod. Phys. 29, 279 (1957) http://dx.doi.org/10.1103/RevModPhys.29.279[Crossref]
  • [22] A. Fursina, Ph.D. thesis, Rice University, (Texas, USA, 2010)
  • [23] C. Gleitzer, J.B. Goodenough, Struct. Bond. 6, 1 (1985) http://dx.doi.org/10.1007/BFb0111192[Crossref]
  • [24] A. Mielewczyk-Gryn, K. Gdula, S. Molin, P. Jasinski, B. Kusz, M. Gazda, J. Non-Cryst. Solids 356, 1976 (2010) http://dx.doi.org/10.1016/j.jnoncrysol.2010.05.068[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-012-0152-6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.