PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 11 | 1 | 37-48
Article title

Exact and approximate solutions of Schrödinger’s equation for a class of trigonometric potentials

Content
Title variants
Languages of publication
EN
Abstracts
EN
The asymptotic iteration method is used to find exact and approximate solutions of Schrödinger’s equation for a number of one-dimensional trigonometric potentials (sine-squared, double-cosine, tangent-squared, and complex cotangent). Analytic and approximate solutions are obtained by first using a coordinate transformation to reduce the Schrödinger equation to a second-order differential equation with an appropriate form. The asymptotic iteration method is also employed indirectly to obtain the terms in perturbation expansions, both for the energies and for the corresponding eigenfunctions.
Publisher
Journal
Year
Volume
11
Issue
1
Pages
37-48
Physical description
Dates
published
1 - 1 - 2013
online
15 - 1 - 2013
References
  • [1] T. Bakarat, J. Phys. A-Math. Gen. 39, 823 (2006) http://dx.doi.org/10.1088/0305-4470/39/4/007[Crossref]
  • [2] H. Ciftci, R.L. Hall, N. Saad, J. Phys. A-Math. Gen. 36, 11807 (2003) http://dx.doi.org/10.1088/0305-4470/36/47/008[Crossref]
  • [3] H. Ciftci, R.L. Hall, N. Saad, J. Phys. A-Math. Gen. 38, 1147 (2005) http://dx.doi.org/10.1088/0305-4470/38/5/015[Crossref]
  • [4] B. Champion, R.L. Hall, N. Saad, Int. J. Mod. Phys. A 23, 1405 (2008) http://dx.doi.org/10.1142/S0217751X08039852[Crossref]
  • [5] H. Ciftci, R.L. Hall, N. Saad, J. Phys. A-Math. Gen. 39, 2338 (2005)
  • [6] H. Ciftci, R.L. Hall, N. Saad, Phys. Lett. A 340, 388 (2005) http://dx.doi.org/10.1016/j.physleta.2005.04.030[Crossref]
  • [7] H. Ciftci, R.L. Hall, N. Saad, Phys. Rev. A 72, 022101 (2005)
  • [8] C.B. Compean, M. Kirchbach, J. Phys. A-Math. Gen. 39, 547 (2006) http://dx.doi.org/10.1088/0305-4470/39/3/007[Crossref]
  • [9] F. Gori, L. de la Torre, Eur. J. Phys. 24, 15 (2003) http://dx.doi.org/10.1088/0143-0807/24/1/301[Crossref]
  • [10] K. Hai, W. Hai, Q. Chen, Phys. Lett. A 367, 445 (2007) http://dx.doi.org/10.1016/j.physleta.2007.03.042[Crossref]
  • [11] M.M. Nieto, L.M. Simmons, Phys. Rev. D 20, 1332 (1979) http://dx.doi.org/10.1103/PhysRevD.20.1332[Crossref]
  • [12] M.G. Marmorino, J. Math. Chem. 32, 303 (2002) http://dx.doi.org/10.1023/A:1022183225087[Crossref]
  • [13] N.W. McLachlan, Theory and application of Mathieu functions (Dover, New York, 1964)
  • [14] N. Saad, R.L. Hall, H. Ciftci, J. Phys. A-Math. Gen. 39, 13445 (2006) http://dx.doi.org/10.1088/0305-4470/39/43/004[Crossref]
  • [15] H. Taseli, J. Math. Chem. 34, 243 (2003) http://dx.doi.org/10.1023/B:JOMC.0000004073.17023.41[Crossref]
  • [16] Zhong-Qi Ma, A. Gonzalez-Cisneros, Bo-Wei Xu, Shi-Hai Dong, Phys. Lett. A 371, 180 (2007) http://dx.doi.org/10.1016/j.physleta.2007.06.021[Crossref]
  • [17] G.E. Andrews, R. Askey, R. Roy, Special Functions Encyclopedia of Mathematics and its Applications (Cambridge University Press, 2001)
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-012-0147-3
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.