Preferences help
enabled [disable] Abstract
Number of results
2012 | 10 | 5 | 1197-1201
Article title

Hydrophobization of epoxy nanocomposite surface with 1H,1H,2H,2H-perfluorooctyltrichlorosilane for superhydrophobic properties

Title variants
Languages of publication
Nature inspires the design of synthetic materials with superhydrophobic properties, which can be used for applications ranging from self-cleaning surfaces to microfluidic devices. Their water repellent properties are due to hierarchical (micrometer- and nanometre-scale) surface morphological structures, either made of hydrophobic substances or hydrophobized by appropriate surface treatment. In this work, the efficiency of two surface treatment procedures, with a hydrophobic fluoropolymer, synthesized and deposited from 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS) is investigated. The procedures involved reactions from the gas and liquid phases of the PFOTS/hexane solutions. The hierarchical structure is created in an epoxy nanocomposite surface, by filling the resin with alumina nanoparticles and micron-sized glass beads and subsequent sandblasting with corundum microparticles. The chemical structure of the deposited fluoropolymer was examined using XPS spectroscopy. The topography of the modified surfaces was characterized using scanning electron microscopy (SEM), and atomic force microscopy (AFM). The hydrophobic properties of the modified surfaces were investigated by water contact and sliding angles measurements. The surfaces exhibited water contact angles of above 150° for both modification procedures, however only the gas phase modification provided the non-sticking behaviour of water droplets (sliding angle of 3°). The discrepancy is attributed to extra surface roughness provided by the latter procedure.
Physical description
1 - 10 - 2012
21 - 11 - 2012
  • [1] B. Bhushan, Y. C. Jung, Prog. Mater. Sci. 56, 1 (2011)[Crossref]
  • [2] M. Callies, D. Quéré, Soft. Matter. 1, 55 (2005)[Crossref]
  • [3] A. Nakajima, K. Hashimoto, T. Watanabe, Monatsh. Chem. 132, 31 (2001)[Crossref]
  • [4] K. Koch, B. Bhushan, W. Barthlott, Prog. Mater. Sci. 54, 137 (2009)[Crossref]
  • [5] J. L. Zhang, J. A. Li, Y. C. Han, Macromol. Rapid Comm. 25, 1105 (2004)[Crossref]
  • [6] M. Ma, R. M. Hill, Curr. Opin. Colloid In. 11, 193 (2006)[Crossref]
  • [7] X. M. Li, D. Reinhoudt, M. Crego-Calama, Chem. Soc. Rev. 36, 1350 (2007)[Crossref]
  • [8] Y. Ohkubo, I. Tsuji, S. Onishi, K. Ogawa, J. Mater. Sci. 45, 4963 (2010)[Crossref]
  • [9] M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, Y. Chen, Langmuir 21, 8978 (2005)[Crossref]
  • [10] A. Pozzato, S. Dal Zilio, G. Fois, D. Vendramin, G. Mistura, M. Belotti, Y. Chen, M. Natali, Microelectron. Eng. 83, 884 (2006)[Crossref]
  • [11] J. T. Han, Y. Jang, D. Y. Lee, J. H. Park, S. H. Song, D. Y. Ban, J. Mater. Chem. 15, 3089 (2005)[Crossref]
  • [12] E. Hosono, S. Fujihara, I. Honma, H. S. Zhou, J. Am. Chem. Soc. 127, 13458 (2005)[Crossref]
  • [13] Z. Cui, L. Yin, Q. Wang, J. Ding, Q. Chen, J. Colloid Interf. Sci. 337, 531 (2009)[Crossref]
  • [14] C. Haensch, S. Hoeppener, U. S. Schubert, Chem. Soc. Rev. 39, 2323 (2010)[Crossref]
  • [15] M. A. Raza, E. S. Kooij, A. van Silfhout, B. Poelsema, Langmuir 26, 12962 (2010)[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.