PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2012 | 10 | 5 | 1197-1201
Article title

Hydrophobization of epoxy nanocomposite surface with 1H,1H,2H,2H-perfluorooctyltrichlorosilane for superhydrophobic properties

Content
Title variants
Languages of publication
EN
Abstracts
EN
Nature inspires the design of synthetic materials with superhydrophobic properties, which can be used for applications ranging from self-cleaning surfaces to microfluidic devices. Their water repellent properties are due to hierarchical (micrometer- and nanometre-scale) surface morphological structures, either made of hydrophobic substances or hydrophobized by appropriate surface treatment. In this work, the efficiency of two surface treatment procedures, with a hydrophobic fluoropolymer, synthesized and deposited from 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS) is investigated. The procedures involved reactions from the gas and liquid phases of the PFOTS/hexane solutions. The hierarchical structure is created in an epoxy nanocomposite surface, by filling the resin with alumina nanoparticles and micron-sized glass beads and subsequent sandblasting with corundum microparticles. The chemical structure of the deposited fluoropolymer was examined using XPS spectroscopy. The topography of the modified surfaces was characterized using scanning electron microscopy (SEM), and atomic force microscopy (AFM). The hydrophobic properties of the modified surfaces were investigated by water contact and sliding angles measurements. The surfaces exhibited water contact angles of above 150° for both modification procedures, however only the gas phase modification provided the non-sticking behaviour of water droplets (sliding angle of 3°). The discrepancy is attributed to extra surface roughness provided by the latter procedure.
Publisher

Journal
Year
Volume
10
Issue
5
Pages
1197-1201
Physical description
Dates
published
1 - 10 - 2012
online
21 - 11 - 2012
Contributors
  • Department of Materials Technology and Chemistry, University of Lodz, Pomorska 163, 90-236, Lodz, Poland, mpsarski@uni.lodz.pl
author
  • Department of Materials Technology and Chemistry, University of Lodz, Pomorska 163, 90-236, Lodz, Poland
  • Department of Materials Technology and Chemistry, University of Lodz, Pomorska 163, 90-236, Lodz, Poland, gcelichowski@uni.lodz.pl
  • Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24, 00-665, Warsaw, Poland
  • Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska 24, 00-665, Warsaw, Poland
author
  • State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, 18 Middle Tianshui Road, 730000, Lanzhou, China
author
  • State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, 18 Middle Tianshui Road, 730000, Lanzhou, China
References
  • [1] B. Bhushan, Y. C. Jung, Prog. Mater. Sci. 56, 1 (2011) http://dx.doi.org/10.1016/j.pmatsci.2010.04.003[Crossref]
  • [2] M. Callies, D. Quéré, Soft. Matter. 1, 55 (2005) http://dx.doi.org/10.1039/b501657f[Crossref]
  • [3] A. Nakajima, K. Hashimoto, T. Watanabe, Monatsh. Chem. 132, 31 (2001) http://dx.doi.org/10.1007/s007060170142[Crossref]
  • [4] K. Koch, B. Bhushan, W. Barthlott, Prog. Mater. Sci. 54, 137 (2009) http://dx.doi.org/10.1016/j.pmatsci.2008.07.003[Crossref]
  • [5] J. L. Zhang, J. A. Li, Y. C. Han, Macromol. Rapid Comm. 25, 1105 (2004) http://dx.doi.org/10.1002/marc.200400065[Crossref]
  • [6] M. Ma, R. M. Hill, Curr. Opin. Colloid In. 11, 193 (2006) http://dx.doi.org/10.1016/j.cocis.2006.06.002[Crossref]
  • [7] X. M. Li, D. Reinhoudt, M. Crego-Calama, Chem. Soc. Rev. 36, 1350 (2007) http://dx.doi.org/10.1039/b602486f[Crossref]
  • [8] Y. Ohkubo, I. Tsuji, S. Onishi, K. Ogawa, J. Mater. Sci. 45, 4963 (2010) http://dx.doi.org/10.1007/s10853-010-4362-2[Crossref]
  • [9] M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, Y. Chen, Langmuir 21, 8978 (2005) http://dx.doi.org/10.1021/la050316q[Crossref]
  • [10] A. Pozzato, S. Dal Zilio, G. Fois, D. Vendramin, G. Mistura, M. Belotti, Y. Chen, M. Natali, Microelectron. Eng. 83, 884 (2006) http://dx.doi.org/10.1016/j.mee.2006.01.012[Crossref]
  • [11] J. T. Han, Y. Jang, D. Y. Lee, J. H. Park, S. H. Song, D. Y. Ban, J. Mater. Chem. 15, 3089 (2005) http://dx.doi.org/10.1039/b504850h[Crossref]
  • [12] E. Hosono, S. Fujihara, I. Honma, H. S. Zhou, J. Am. Chem. Soc. 127, 13458 (2005) http://dx.doi.org/10.1021/ja053745j[Crossref]
  • [13] Z. Cui, L. Yin, Q. Wang, J. Ding, Q. Chen, J. Colloid Interf. Sci. 337, 531 (2009) http://dx.doi.org/10.1016/j.jcis.2009.05.061[Crossref]
  • [14] C. Haensch, S. Hoeppener, U. S. Schubert, Chem. Soc. Rev. 39, 2323 (2010) http://dx.doi.org/10.1039/b920491a[Crossref]
  • [15] M. A. Raza, E. S. Kooij, A. van Silfhout, B. Poelsema, Langmuir 26, 12962 (2010) http://dx.doi.org/10.1021/la101867z[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-012-0114-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.