Preferences help
enabled [disable] Abstract
Number of results
2012 | 10 | 5 | 1178-1182
Article title

Local capacitance analysis using a modified deep level spectrometer

Title variants
Languages of publication
A bimorph-based xz scanner and an amplifier, increasing the capacitance and current measurement sensitivities 250-times and 1000-times, respectively, have been built into the cryostat of a deep level transient spectrometer. The setup renders point by point local capacitance-voltage (C–V) at 1 MHz and dc currentvoltage (I–V) measurements using a sharp tip placed into tunnelling distance from the surface of analysed semiconductor sample. The C–V measurements revealed a strong dependence on the probe/sample separation, ranging from MOS-type at small tunnelling currents to Schottky-type at currents exceeding approximately 10 pA. Marked hysteresis was observed, indicating changes of surface state occupancy. These slow states are otherwise hardly detected, since they are absent in semiconductor/metal contacts and in MOS structures they would become mostly passivated interface states. The setup enables calibrated, fixed zero level capacitance measurement. The stray capacitance is the dominant component of the measured capacitance but it can be easily discarded.
Physical description
1 - 10 - 2012
21 - 11 - 2012
  • Hungarian Academy of Sciences Research Institute for Technical Physics and Materals Science, P.O.B. 49, H-1525, Budapest, Hungary
  • Institute of Physics, SAS Bratislava, Dubravska cesta 9, 845 11, Bratislava 45, Slovakia
  • [1] J. R. Matey, US Patent 4481616, November 6, 1984
  • [2] J. R. Matey, J. J. Blanc, J. Appl. Phys. 57, 1437 (1985)[Crossref]
  • [3] C. D. Bugg, P. J. King, J. Phys. E Sci. Instrum. 21, 147 (1988)[Crossref]
  • [4] H. P. Kleinknecht, J. R. Sandercock, H. Meier, Scanning Microscopy 2, 1839 (1988)
  • [5] C. C. Williams, J. Slinkman, W. P. Hough, H. K. Wickramasinghe, Appl. Phys. Lett. 55, 1662 (1989)[Crossref]
  • [6] Š. Lányi, J. Török, P. Rehurek, Rev. Sci. Instrum. 65, 2258 (1994)[Crossref]
  • [7] Š. Lányi, M. Hruškovic, Rev. Sci. Instrum. 73, 2923 (2002)[Crossref]
  • [8] H. Edwards et al., Appl. Phys. Lett. 72, 698 (1998)[Crossref]
  • [9] C. C. Williams, Annu. Rev. Mater. Sci. 29, 471 (1999)[Crossref]
  • [10] V. V. Zavyalov, J. S. McMurray, S. D. Stirling, C. C. Williams, H. Smith, J. Vac. Sci. Technol. B 18, 549 (2000)[Crossref]
  • [11] L. Calcagno, V. Raineri, Curr. Opin. Solid. St. M. 6, 47 (2002)[Crossref]
  • [12] N. Duhayon et al., J. Vac. Sci. Technol. B 22, 385 (2004)[Crossref]
  • [13] F. Giannazzo et al., J. Vac. Sci. Technol. B 24, 370 (2006)[Crossref]
  • [14] O. Douhéret, S. Anand, C. Angulo Barrios, S. Lourdudoss, Appl. Phys. Lett. 81, 960 (2002)[Crossref]
  • [15] L. Ciampolini, F. Giannazzo, M. Ciappa, W. Fichtner, V. Raineri, Mat. Sci. Semicon. Proc. 4, 85 (2001)[Crossref]
  • [16] X. Zhou et al., Appl. Phys. Lett. 86, 202113 (2005)[Crossref]
  • [17] O. Jeandupeux et al., Microelectron. Reliab. 42, 225 (2002)[Crossref]
  • [18] R.C. Palmer, E.J. Denlinger, H. Kawamoto, RCA Rev. 43, 194 (1982)
  • [19] S. M. Sze, Physics of Semiconductor Devices (Wiley-Interscience, New York, 1969)
  • [20] R. Shao, S. V. Kalinin, D. A. Bonnell, Mat. Res. Soc. Symp. Proc. 738, G4.4.1 (2003)
  • [21] R. Shao, S. V. Kalinin, D. A. Bonnell, Appl. Phys. Lett. 82, 1869 (2003)[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.