PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2012 | 10 | 5 | 1116-1124
Article title

Generation of the vorticity mode by sound in a vibrationally relaxing gas

Content
Title variants
Languages of publication
EN
Abstracts
EN
The procedure of derivation of a new dynamical equation governing the vorticity mode that is generated by sound, is discussed in detail. It includes instantaneous quantities and does not require averaging over sound period. The resulting equation applies to both periodic and aperiodic sound as the origin of the vorticity mode. Under certain conditions, the direction of streamlines of the vorticity mode may be inverted as compared with that in a fluid with standard attenuation. This reflects an anomalous absorption of sound, when transfer of momentum of the vorticity mode into momentum of sound occurs. The theory is illustrated by a representative example of the generation of vorticity in a vibrationally relaxing gas in the field of periodic weakly diffracting acoustic beam.
Publisher

Journal
Year
Volume
10
Issue
5
Pages
1116-1124
Physical description
Dates
published
1 - 10 - 2012
online
21 - 11 - 2012
Contributors
  • Gdansk University of Technology, Faculty of Applied Physics and Mathematics, ul. Narutowicza 11/12, 80-233, Gdansk, Poland
author
  • Gdansk University of Technology, Faculty of Applied Physics and Mathematics, ul. Narutowicza 11/12, 80-233, Gdansk, Poland
References
  • [1] W.L. Nyborg, In: W.P. Manson (Ed.), Physical Acoustics, Vol. II. part B (Academic Press, New York, 1965) 265
  • [2] O.V. Rudenko, S.I. Soluyan, Theoretical foundations of nonlinear acoustics (Plenum, New York, 1977)
  • [3] M.J. Lighthill, J. Sound. Vib. 61, 391 (1978)
  • [4] Q. Qi, J. Acoust. Soc. Am. 94, 1090 (1993)
  • [5] A. Perelomova, Acta Acust. 89, 754 (2003)
  • [6] A. Perelomova, Phys. Lett. A 357, 42 (2006)
  • [7] A. Perelomova, P. Wojda, Cent. Eur. J. Phys. 9, 1135 (2011)
  • [8] A.A. Collyer, Phys. Educ. 9, 38 (1974)
  • [9] B.T. Chu, Weak nonlinear waves in nonequilibrium flows, In: P.P. Wegener (Ed.), Nonequilibrium flows, Vol. 1 (Marcel Dekker, New York, 1970)
  • [10] D.F. Parker, Phys. Fluids 15, 256 (1972)
  • [11] J.F. Clarke, A. McChesney, Dynamics of relaxing gases (Butterworth, London, 1976)
  • [12] N.E. Molevich, Acoust. Phys. 48, 209 (2002)
  • [13] Ya.B. Zeldovich, Yu.P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena (Academic Press, New York, 1966)
  • [14] A.I. Osipov, A.V. Uvarov, Sov. Phys. Usp. 35, 903 (1992)
  • [15] N.E. Molevich, Acoust. Phys.+ 49, 229 (2003)
  • [16] A. Perelomova, Can. J. Phys. 88, 29 (2010)
  • [17] A. Perelomova, Acta Acust. 96, 43 (2010)
  • [18] M. Hamilton, V. Khokhlova, O.V. Rudenko, J. Acoust. Soc. Am. 101, 1298 (1997)
  • [19] N.E. Molevich, Acoust. Phys.+ 47, 102 (2001)
  • [20] A. Perelomova, Cent. Eur. J. Chem. 88, 293 (2010)
  • [21] A.V. Koltsova, A.I. Osipov, A.V. Uvarov, Sov. Phys. Acoust.+ 40, 969 (1994)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-012-0098-8
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.