PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2012 | 10 | 6 | 1274-1277
Article title

Centrality dependence of freeze-out parameters from Au+Au collisions at $\sqrt {s_{NN} } $ = 7.7, 11.5 and 39 GeV

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
The RHIC beam energy scan program in its first phase collected data for Au+Au collisions at beam energies of 7.7, 11.5 and 39 GeV. The event statistics collected at these lower energies allow us to study the centrality dependence of various observables in detail, and compare to fixed-target experiments at SPS for similar beam energies. The chemical and kinetic freeze-out parameters can be extracted from the experimentally measured yields of identified hadrons within the framework of thermodynamical models. These then provide information about the system at the stages of the expansion where inelastic and elastic collisions of the constituents cease. We present the centrality dependence of freeze-out parameters for Au+Au collisions at midrapidity for $\sqrt {s_{NN} } $ = 7.7, 11.5, and 39 GeV from the STAR experiment. The chemical freeze-out conditions are obtained by comparing the measured particle ratios (involving π, K, p, and p) to those from the statistical thermal model calculations. The kinetic freeze-out conditions are extracted at these energies by simultaneously fitting the invariant yields of identified hadrons (π, K, and p) using Blast Wave model calculations.
Publisher

Journal
Year
Volume
10
Issue
6
Pages
1274-1277
Physical description
Dates
published
1 - 12 - 2012
online
4 - 12 - 2012
Contributors
author
References
  • [1] B. I. Abelev et al. (STAR Collaboration), Phys. Rev. C 81, 024911 (2010) http://dx.doi.org/10.1103/PhysRevC.81.024911[Crossref]
  • [2] M. M. Aggarwal et al. (STAR Collaboration), arXiv:1007.2613
  • [3] L. Kumar (STAR Collaboration), Nucl. Phys. A 830, 275C (2009) http://dx.doi.org/10.1016/j.nuclphysa.2009.10.023[Crossref]
  • [4] L. Kumar (STAR Collaboration), Nucl. Phys. A 862, 125 (2011) http://dx.doi.org/10.1016/j.nuclphysa.2011.05.030[Crossref]
  • [5] B. Mohanty, Nucl. Phys. A 830, 899C (2009) http://dx.doi.org/10.1016/j.nuclphysa.2009.10.132[Crossref]
  • [6] Y. Aoki et al., Nature 443, 675 (2006) http://dx.doi.org/10.1038/nature05120[Crossref]
  • [7] S. Gupta et al., Science 332, 1525 (2011) http://dx.doi.org/10.1126/science.1204621[Crossref]
  • [8] S. Ejiri, Phys. Rev. D 78, 074507 (2008) http://dx.doi.org/10.1103/PhysRevD.78.074507[Crossref]
  • [9] E. S. Bowman, J. I. Kapusta, Phys. Rev. C 79, 015202 (2009) http://dx.doi.org/10.1103/PhysRevE.79.015202[Crossref]
  • [10] J. Adams et al. (STAR Collaboration), Nucl. Phys. A 757, 102 (2005) http://dx.doi.org/10.1016/j.nuclphysa.2005.03.085[Crossref]
  • [11] P. Braun-Munzinger et al., Phys. Lett. B 344, 43 (1995) http://dx.doi.org/10.1016/0370-2693(94)01534-J[Crossref]
  • [12] J. Cleymans et al., Comput. Phys. Commun., 180, 84 (2009) http://dx.doi.org/10.1016/j.cpc.2008.08.001[Crossref]
  • [13] L. Kumar (STAR collaboration), J. Phys. G Nucl. Partic. 38, 124145 (2011) http://dx.doi.org/10.1088/0954-3899/38/12/124145[Crossref]
  • [14] E. Schnedermann et al., Phys. Rev. C 48, 2462 (1993) http://dx.doi.org/10.1103/PhysRevC.48.2462[Crossref]
  • [15] B. I. Abelev et al. (STAR Collaboration), Phys. Rev. C 79, 034909 (2009) http://dx.doi.org/10.1103/PhysRevC.79.034909[Crossref]
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-012-0097-9
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.