PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2012 | 10 | 5 | 1221-1227
Article title

Duality on the quantum space(3) with two parameters

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this study, we introduce a dual Hopf algebra in the sense of Sudbery for the quantum space(3) whose coordinates satisfy the commutation relations with two parameters and we show that the dual algebra is isomorphic to the quantum Lie algebra corresponding to the Cartan-Maurer right invariant differential forms on the quantum space(3). We also observe that the quantum Lie algebra generators are commutative as those of the undeformed Lie algebra and the deformation becomes apparent when one studies the Leibniz rules for the generators.
Publisher

Journal
Year
Volume
10
Issue
5
Pages
1221-1227
Physical description
Dates
published
1 - 10 - 2012
online
21 - 11 - 2012
Contributors
  • Department of Mathematics, Yildiz Technical University, Campus of Davutpasa, 34210, Istanbul, Turkey, mozavsar@yildiz.edu.tr
  • Department of Mathematics, Yildiz Technical University, Campus of Davutpasa, 34210, Istanbul, Turkey, gyesilot@yildiz.edu.tr
References
  • [1] V. G. Drinfeld, In: A. M. Gleason (Ed.), Proceedings International Congress of Mathematicians, 03–11 August 1986, Berkeley, California, USA (Amer. Math.Soc., 1988) 798
  • [2] M. Jimbo, Lett. Math. Phys. 11, 247 (1986) http://dx.doi.org/10.1007/BF00400222[Crossref]
  • [3] L. A. Takhtajan, Adv. Stud. Pure Math. 19, 435 (1989)
  • [4] Y. I. Manin, Quantum Groups and Noncommutative Geometry (Centre de Reserches Mathematiques, Montreal, 1988)
  • [5] Y. I. Manin, Commun. Math. Phys. 123, 163 (1989) http://dx.doi.org/10.1007/BF01244022[Crossref]
  • [6] S. L. Woronowicz, Commun. Math. Phys. 111, 613 (1987) http://dx.doi.org/10.1007/BF01219077[Crossref]
  • [7] L. Faddeev, N. Reshetikin, L. Takhtajan, Alg. Anal. 1, 129 (1988)
  • [8] L. Alvarez-Gaume, C. Gomez, G. Sierra, Nucl. Phys. B 330, 347 (1990) http://dx.doi.org/10.1016/0550-3213(90)90116-U[Crossref]
  • [9] L. Alvarez-Gaume, C. Gomez, G. Sierra, Phys. Lett. B 220, 142 (1989) http://dx.doi.org/10.1016/0370-2693(89)90027-0[Crossref]
  • [10] G. Moore, N. Reshetikhin, Nucl. Phys. B 328, 557 (1989) http://dx.doi.org/10.1016/0550-3213(89)90219-8[Crossref]
  • [11] R. B. Zhang, M. D. Gould, A. J. Bracken, Commun. Math. Phys. 137, 13 (1989). http://dx.doi.org/10.1007/BF02099115[Crossref]
  • [12] S. Majid, Fondation of Quantum Group Theory, (Cambridge University Press, Cambridge, 1995) http://dx.doi.org/10.1017/CBO9780511613104[Crossref]
  • [13] J. Mourad, Classical Quant. Grav. 12, 965 (1995) http://dx.doi.org/10.1088/0264-9381/12/4/007[Crossref]
  • [14] J. Madore, An Introduction to Noncommutative Differential Geometry and Its Applications, 2nd edition (Cambridge University Press, Cambridge, 2000)
  • [15] P. G. Castro, B. Chakraborty, Z. Kuznetsova, F. Toppan, Cent. Eur. J. Phys. 9, 841 (2011) http://dx.doi.org/10.2478/s11534-010-0078-9[Crossref]
  • [16] A. A. Altıntaş, M. Arık, A. S. Arıkan, Cent. Eur. J. Phys. 8, 819 (2010) http://dx.doi.org/10.2478/s11534-009-0168-8[Crossref]
  • [17] R. M. Ubriaco, J. Phys. A Math. Gen. 25, 169 (1992) http://dx.doi.org/10.1088/0305-4470/25/1/021[Crossref]
  • [18] S. L. Woronowicz, Commun. Math. Phys. 122, 125 (1989) http://dx.doi.org/10.1007/BF01221411[Crossref]
  • [19] J. Wess, B. Zumino, Nucl. Phys. 18, 302 (1990)
  • [20] T. Brzezinski, Lett. Math. Phys. 27, 287 (1993) http://dx.doi.org/10.1007/BF00777376[Crossref]
  • [21] A. Sudbery, Phys. Lett. B 284, 61 (1992) http://dx.doi.org/10.1016/0370-2693(92)91925-Y[Crossref]
  • [22] T. Kobayashi, T. Uematsu, Z. Phys. 56, 193 (1992)
  • [23] A. El Hassouni, Y. Hassouni, E. H. Tahri, Int. J. Theor. Phys. 35, 2517 (1996) http://dx.doi.org/10.1007/BF02085760[Crossref]
  • [24] P. Bouwknegt, J. McCarthy, P. Nieuwenhuizen, Phys. Lett. B 394, 82 (1997) http://dx.doi.org/10.1016/S0370-2693(96)01679-6[Crossref]
  • [25] N. Aizawa, R. Chakrabarti, J. Math. Phys. 45, 1623 (2004) http://dx.doi.org/10.1063/1.1650538[Crossref]
  • [26] E. M. Falaki, E. H. Tahri, J. Phys. A Math. Gen. 34, 3403 (2001) http://dx.doi.org/10.1088/0305-4470/34/16/308[Crossref]
  • [27] R. Coquereaux, A. O. Garcia, R. Trinchero, Rev. Math. Phys. 12, 227 (2000) http://dx.doi.org/10.1142/S0129055X00000095[Crossref]
  • [28] E. Baz, Mod. Phys. Lett. A 21, 2323 (2006) http://dx.doi.org/10.1142/S0217732306020536[Crossref]
  • [29] Z. Bentalha, M. Tahiri, Int. J. Geom. Methods M. 4, 1087 (2007) http://dx.doi.org/10.1142/S0219887807002442[Crossref]
  • [30] A. Sudbery, In: T. Curtright, D. Fairlie, and C. Zachos (Eds), Proceedings of the Workshop on Quantum Groups, 1990, Chicago, USA (World Scientific, Singapore, 1991) 697
  • [31] V. K. Dobrev, J. Math. Phys. 33, 3419 (1992) http://dx.doi.org/10.1063/1.529890[Crossref]
  • [32] S. A. Celik, E. Yasar, Czech. J. Phys. 56, 229 (2006) http://dx.doi.org/10.1007/s10582-006-0083-9[Crossref]
  • [33] P. N. Watts, PhD Thesis, University of California (Berkeley, USA, 1994)
  • [34] S. Celik, E. M. Özkan, E. Yasar, Turk. J. Math. 33, 75 (2009)
  • [35] M. Ozavşar, G. Yesilot, Int. J. Geom. Methods M. 8, 1667 (2011) http://dx.doi.org/10.1142/S0219887811005877[Crossref]
  • [36] M. Özavşar, G. Yesilot, Eur. J. Pure Appl. Math. 5, 297 (2012)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-012-0092-1
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.