Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2012 | 10 | 3 | 645-651

Article title

Conciliating the nonadditive entropy approach and the fractional model formulation when describing subdiffusion

Content

Title variants

Languages of publication

EN

Abstracts

EN
We consider here two different models describing subdiffusion. One of them is derived from Continuous Time Random Walk formalism and utilizes a subdiffusion equation with a fractional time derivative. The second model is based on Sharma-Mittal nonadditive entropy formalism where the subdiffusive process is described by a nonlinear equation with ordinary derivatives. Using these two models we describe the process of a substance released from a thick membrane and we find functions which determine the time evolution of the amount of substance remaining inside this membrane. We then find ‘the agreement conditions’ under which these two models provide the same relation defining subdiffusion and give the same function characterizing the process of the released substance. These agreement conditions enable us to determine the relation between the parameters occuring in both models.

Publisher

Journal

Year

Volume

10

Issue

3

Pages

645-651

Physical description

Dates

published
1 - 6 - 2012
online
17 - 6 - 2012

Contributors

  • Institute of Physics, Jan Kochanowski University, ul. Świȩtokrzyska 15, 25-406, Kielce, Poland
  • Department of Radiological Informatics and Statistics, Medical University of Gdańsk, ul. Tuwima 15, 80-210, Gdańsk, Poland

References

  • [1] J. P. Bouchaud, A. Georges, Phys. Rep. 195 127 (1990)
  • [2] R. Metzler, J. Klafter, Phys. Rep. 339 1 (2000) http://dx.doi.org/10.1016/S0370-1573(00)00070-3[Crossref]
  • [3] R. Metzler, J. Klafter, J. Phys. A 37 R161 (2007) http://dx.doi.org/10.1088/0305-4470/37/31/R01[Crossref]
  • [4] T. D. Frank, Nonlinear Fokker-Planck Equations. Fundamental and Applications, (Springer, Berlin, 2005)
  • [5] C. Tsallis, Introduction to Nonextensive Statistical Mechanics, (Springer, NY, 2009)
  • [6] D. A. Stariolo, Phys. Lett. A 185, 262 (1994) http://dx.doi.org/10.1016/0375-9601(94)90613-0[Crossref]
  • [7] A. R. Plastino, A. Plastino, Physica A 222, 347 (1995) http://dx.doi.org/10.1016/0378-4371(95)00211-1[Crossref]
  • [8] A. Compte, D. Jou, J. Phys. A 29, 4321 (1996) http://dx.doi.org/10.1088/0305-4470/29/15/007[Crossref]
  • [9] T. D. Frank, Physica A 310, 397 (2002) http://dx.doi.org/10.1016/S0378-4371(02)00821-X[Crossref]
  • [10] C. Beck, Contemp. Phys. 50, 495 (2009) http://dx.doi.org/10.1080/00107510902823517[Crossref]
  • [11] T. Kosztołowicz, K. D. Lewandowska, Acta Phys. Pol. B 43 1043 (2012) http://dx.doi.org/10.5506/APhysPolB.43.1043[Crossref]
  • [12] T. Kosztołowicz, K. Dworecki, S. Mrówcznski, Phys. Rev. Lett. 94, 170602 (2005) http://dx.doi.org/10.1103/PhysRevLett.94.170602[Crossref]
  • [13] T. Kosztołowicz, K. Dworecki, S. Mrówcznski, Phys. Rev. E 71, 041105 (2005) http://dx.doi.org/10.1103/PhysRevE.71.041105[Crossref]
  • [14] T. Kosztołowicz, K. D. Lewandowska, Phys. Rev. E 78, 066103 (2008) http://dx.doi.org/10.1103/PhysRevE.78.066103[Crossref]
  • [15] S. B. Yuste, L. Acedo, K. Lindenberg, Phys. Rev. E 69, 036126 (2004) http://dx.doi.org/10.1103/PhysRevE.69.036126[Crossref]
  • [16] K. Dworecki, T. Kosztołowicz, K. D. Lewandowska, Acta Phys. Pol. B 39, 1221 (2008)
  • [17] A. Klemm, R. Metzler, R. Kimmich, Phys. Rev. E 65, 021112 (2002) http://dx.doi.org/10.1103/PhysRevE.65.021112[Crossref]
  • [18] T. Kosztołowicz, K. Dworecki, K. D. Lewandowska, arXiv:0809.1809v1 [cond-mat.soft]
  • [19] I. Podlubny, Fractional differential equations, (Academic Press, San Diego, 1999)
  • [20] T. Kosztołowicz, J. Phys. A 31, 1943 (1998) http://dx.doi.org/10.1088/0305-4470/31/8/007[Crossref]
  • [21] T. D. Frank, Physica A 331, 391 (2004) http://dx.doi.org/10.1016/j.physa.2003.09.056[Crossref]
  • [22] T. D. Frank, A. Daffertshofer, Physica A 285, 351 (2000) http://dx.doi.org/10.1016/S0378-4371(00)00178-3[Crossref]
  • [23] T. Kosztołowicz, K. D. Lewandowska, Acta Phys. Pol. B 40, 1437 (2009)
  • [24] T. Kosztołowicz, K. D. Lewandowska, arXiv:1008.1477 [cond-mat.stat-mech]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_s11534-012-0078-z
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.