PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2012 | 10 | 5 | 1095-1101
Article title

Sliding observer for synchronization of fractional order chaotic systems with mismatched parameter

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper, we propose an observer-based fractional order chaotic synchronization scheme. Our method concerns fractional order chaotic systems in Brunovsky canonical form. Using sliding mode theory, we achieve synchronization of fractional order response with fractional order drive system using a classical Lyapunov function, and also by fractional order differentiation and integration, i.e. differintegration formulas, state synchronization proved to be established in a finite time. To demonstrate the efficiency of the proposed scheme, fractional order version of a well-known chaotic system; Arnodo-Coullet system is considered as illustrative examples.
Publisher

Journal
Year
Volume
10
Issue
5
Pages
1095-1101
Physical description
Dates
published
1 - 10 - 2012
online
21 - 11 - 2012
Contributors
author
  • Department of Electrical Engineering, Hamedan University of Technology, Hamedan, 65155, Iran, delavari@hut.ac.ir
  • Young Researchers club, Central Tehran Branch, Islamic Azad University, Tehran, Iran, d.senejohnny@gmail.com
References
  • [1] E. Goldfain, Commun. Nonlinear Sci. 13, 1397 (2008) http://dx.doi.org/10.1016/j.cnsns.2006.12.007[Crossref]
  • [2] G. M. Zaslavsky, Phys. Rep. 371, 461 (2002) http://dx.doi.org/10.1016/S0370-1573(02)00331-9[Crossref]
  • [3] A. Piryatinska, A. I. Saichev, W. A. Woyczynski, Physica A 349, 375 (2005) http://dx.doi.org/10.1016/j.physa.2004.11.003[Crossref]
  • [4] W. Chen, S. Holm, J. Acoust. Soc. Am. 115, 1424 (2004) http://dx.doi.org/10.1121/1.1646399[Crossref]
  • [5] T. F. Nonnenmacher, In: Lecture Notes in Physics 381 (Springer, Berlin, 1991) 309
  • [6] H. Weitzner, G. M. Zaslavsky, Commun. Nonlinear Sci. 8, 273 (2003) http://dx.doi.org/10.1016/S1007-5704(03)00049-2[Crossref]
  • [7] N. Laskin, Phys. Rev. E 66, 056108 (2002) http://dx.doi.org/10.1103/PhysRevE.66.056108[Crossref]
  • [8] E. Goldfain, Chaos Soliton. Fract. 19, 209 (2004) http://dx.doi.org/10.1016/S0960-0779(03)00304-7[Crossref]
  • [9] E. Goldfain, Chaos Soliton. Fract. 23, 701 (2005) http://dx.doi.org/10.1016/j.chaos.2004.05.020[Crossref]
  • [10] I. Podlubny, Fract. Calc. Appl. Anal. 5, 1 (2002)
  • [11] E. M. Rabei, I. Almayteh, S. I. Muslih, D. Baleanu, Phys. Scripta 77, 015101 (2008) http://dx.doi.org/10.1088/0031-8949/77/01/015101[Crossref]
  • [12] D. Baleanu, S. I. Muslih, Phys. Scripta 72, 119 (2008) http://dx.doi.org/10.1238/Physica.Regular.072a00119[Crossref]
  • [13] E. Bai, K. Lonngren, J. Sprott, Chaos Soliton. Fract. 13, 1515 (2002) http://dx.doi.org/10.1016/S0960-0779(01)00160-6[Crossref]
  • [14] Q. Zhang, S. Chen, Y. Hu, C. Wang, Physica A 371 (2006)
  • [15] L. M. Pecora, T. L. Carroll, Phys. Rev. Lett. 64, 821 (1990) http://dx.doi.org/10.1103/PhysRevLett.64.821[Crossref]
  • [16] J. L. Mata-Machuca, R. Martinez-Guerra, R. Aguilar-Lopez, Commun. Nonlinear Sci. 15, 4114 (2010) http://dx.doi.org/10.1016/j.cnsns.2010.01.040[Crossref]
  • [17] M. Feki, Phys. Lett. A 309, 53 (2003) http://dx.doi.org/10.1016/S0375-9601(03)00171-3[Crossref]
  • [18] J. S. Lin, J. J. Yan, T. L. Liao, Chaos Soliton. Fract. 24, 597 (2005) http://dx.doi.org/10.1016/j.chaos.2004.09.031[Crossref]
  • [19] A. Rodriguez, J. De Leon, L. Fridman, Chaos Soliton. Fract. 42, 3219 (2009) http://dx.doi.org/10.1016/j.chaos.2009.04.055[Crossref]
  • [20] W. Yoo, D. Ji, S. Won, Phys Lett A. 374, 1354 (2010) http://dx.doi.org/10.1016/j.physleta.2010.01.023[Crossref]
  • [21] K. E. Starkov, L. N. Coria, L. T. Aguilar, Commun. Nonlinear Sci. 17, 17 (2012) http://dx.doi.org/10.1016/j.cnsns.2011.04.020[Crossref]
  • [22] W. H. Deng, C. P. Li, Physica A 353, 61 (2005) http://dx.doi.org/10.1016/j.physa.2005.01.021[Crossref]
  • [23] J. Yan, C. P. Li, Chaos, Soliton. Fract. 32, 751 (2007) http://dx.doi.org/10.1016/j.chaos.2005.11.062[Crossref]
  • [24] V. D. Gejji, S. Bhalekar, Comput. Appl. Math. 59, 1117 (2010) http://dx.doi.org/10.1016/j.camwa.2009.07.003[Crossref]
  • [25] K. B. Oldham, J. Spanier, The fractional calculus (Academic Press, New York and London, 1974)
  • [26] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993)
  • [27] I. Podlubny, Fractional differential equations (Academic Press, California, 1999)
  • [28] R. Hilfer, Application of Fractional Calculus in Physics (World Scientific, New Jersey, 2000) http://dx.doi.org/10.1142/9789812817747[Crossref]
  • [29] M. O. Efe, IEEE T. Syst. Man Cy. B 38, 1561 (2008) http://dx.doi.org/10.1109/TSMCB.2008.928227[Crossref]
  • [30] B. M. Vinagre, A. J. Calderon, In: Proc. 7th CONTROLO, Sep. 11–13, 2006, Lisbon, Portugal
  • [31] P. Brunovsky, Kybernetika 6, 176 (1970) http://dx.doi.org/10.1007/BF00273963[Crossref]
  • [32] S. Derivire, M.A. Aziz Alaoui, Le Havre, France, (2001)
  • [33] M. Shahiri, R. Ghaderi, A. Ranjbar, S.H. Hosseinnia, S. Momani, Commun. Nonlinear Sci. 15 (2010)
  • [34] A. A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006)
  • [35] M. S. Tavazoei, M. Haeri, IET Signal Process. 4 (2007)
  • [36] Z. Shuqin, Nonlinear Analysis. 71 (2009)
  • [37] G. S. Ladde, V. Lakshmikantham, A. S. Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations (Pitman Pub. Co., Boston, 1985)
  • [38] B. Ahmad, S. Sivasundaram, Comput. Appl. Math. 197, 515 (2008) http://dx.doi.org/10.1016/j.amc.2007.07.065[Crossref]
  • [39] D. M. Senejohnny, H. Delavari, Commun. Nonlinear Sci. (2012)
  • [40] D. M. Senejohnny, H. Delavari, Signal, Image and Video Processing, (2012)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_s11534-012-0073-4
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.